Table of Contents
1.0 — SCOPE
1.1 — Referenced standards and specifications
1.1.1 — American Association of State Highway and Transportation Officials (AASHTO)
1.1.2 — American Welding Society (AWS)
1.1.3 — ASTM International
1.1.4 — British Standards Institute
1.1.5 — California Department of Transportation (CALTRANS)
1.1.6 — European Committee for Standardization
1.1.7 — Federal Highway Administration (FHWA)
1.1.8 — French Association for Standardization
1.1.9 — German Institute for Standardization
1.1.10 — International Federation for Structural Concrete (fib)
1.1.11 — Post-Tensioning Institute (PTI)
1.1.12 — SSPC: Society for Protective Coatings
1.1.13 — Swiss Society of Engineers and Architects
2.0 — NOTATION, DEFINITIONS, AND ABBREVIATIONS
2.1 — Notation
2.2 — Definitions
2.3 — Abbreviations
3.0 — MATERIALS
3.1 — General
3.2 — Main tension elements
3.2.1 — Wire
3.2.1.1 — Quality control
3.2.2 — Strand
3.2.2.1 — Quality control
3.2.3 — Epoxy-coated strand
3.2.3.1 — Quality control
3.2.3.2 — Surface preparation
3.2.3.3 — Application of epoxy coating
3.2.3.4 — Inspection of materials
3.2.3.5 — Replacement of rejected epoxy strand
3.2.4 — Bar
3.2.4.1 — Quality control
3.2.5 — Wire or strand not specifically itemized in ASTM A421/A421M or A416/A416M
3.2.6 — Bars not specifically itemized in ASTM A722/A722M
3.3 — Individually sheathed strands with corrosion-inhibiting coating
3.3.1 — Surface preparation
3.3.2 — Application of corrosion-inhibiting coating
3.3.2.1 — Quality control
3.3.3 — Application of sheathing
3.3.4 — Inspection
3.3.5 — Replacement of rejected sheathed strand
3.3.6 — High-density polyethylene material for sheathed strand
3.3.7 — Polypropylene material for sheathed strand
3.3.8 — Corrosion-inhibiting coating material
3.3.9 — Performance tests for individually sheathed polyethylene or polypropylene strand
3.4 — Anchorage components
3.5 — Stay pipe
3.5.1 — Cross-sectional area
3.5.2 — Steel pipe
3.5.2.1 — Coating
3.5.3 — High-density polyethylene pipe
3.5.3.1 — Pipe specifications
3.5.3.2 — Material specifications
3.5.3.3 — Wall thickness
4.0 — SYSTEMS QUALIFICATION AND TESTING
4.1 — Corrosion protection
4.1.1 — General
4.1.2 — Barriers
4.1.2.1 — Anchorage/free length interface
4.1.3 — Materials
4.1.4 — Qualification of barriers
4.1.4.1 — Internal barriers
4.1.4.2 — External barriers
4.1.5 — Qualification of temporary corrosion protec¬tion system
4.1.6 — Qualification of anchorage assembly
4.1.6.1 — Leak test
4.1.6.2 — Preparation
4.1.6.3 — Testing
4.1.7 — Acceptance criteria
4.1.7.1 — Barriers
4.1.7.2 — Anchorage assembly
4.1.8 — Documentation
4.2 — Acceptance testing of stay cables
4.2.1 — Limitations of full-scale acceptance testing of stay cables—seismic loading
4.3 — Acceptance and performance testing of isolated MTE cable saddles
4.3.1 — Introduction
4.3.2 — Testing protocol for saddles
4.3.3 — Friction testing
4.3.3.1 — Testing procedure
4.3.3.2 — Interpretation
4.3.4 — Fatigue, strength, and corrosion protection
4.3.4.1 — Qualification of saddles
4.3.4.2 — Saddle fatigue test
4.3.4.3 — Additional testing
4.3.5 — Acceptance of prior tests of cable saddles
4.4 — Acceptance of prior tests of stay cables
4.5 — Quality control of other stay cable components
4.6 — Fire resistance qualification testing
4.6.1 — Furnace and test temperatures
4.6.2 — Test specimen and monitoring temperature of MTE
4.7 — Summary of testing requirements
5.0 — LRFD DESIGN
5.1 — Loads
5.1.1 — Dead loads
5.1.2 — Live loads
5.1.3 — Fatigue load
5.1.4 — Dynamic load allowance
5.1.5 — Wind loads on stay cables
5.1.6 — Thermal loads
5.2 — Wind-induced vibrations
5.2.1 — Mechanisms of dynamic excitation
5.2.2 — Monitoring of cable vibrations
5.2.3 — Design provisions
5.2.3.1 — Contingency measures
5.2.3.2 — Rain-wind-induced vibrations
5.2.3.4 — Aerodynamic contour of cable
5.2.3.5 — Damping
5.2.3.6 — Stabilizing cables
5.2.3.7 — Connections
5.2.3.8 — Rattling
5.3 — Design
5.3.1 — Design limit states
5.3.2 — Load factors and combinations
5.3.2.1 — Construction limit state
5.3.3 — Resistance factors
5.3.3.1 — Special seismic resistance factors
5.3.4 — Bending effects—free length
5.3.4.1 — Strength of stay cable anchorages for lateral loads
5.3.5 — Fatigue limit state
5.4 — Cable replacement
5.5 — Loss of cable
5.5.1 — Cable loss due to fire
5.6 — Construction
5.7 — Design of cable saddles
5.7.1 — General
5.7.1.1 — Design requirements
5.7.2 — Design criteria
5.7.2.1 — Cable radius
5.7.2.2 — Slip and force transfer
5.7.2.3 — Cable bending stresses
5.7.2.4 — Cable loss with saddles
5.7.2.5 — Analytical requirements for seismic loading
5.7.3 — Detailing
5.7.3.1 — Corrosion protection system
5.7.3.2 — Qualification of saddle corrosion protection system details
5.7.4 — Testing
5.7.4.1 — Saddle design testing
5.7.4.2 — Fatigue testing
5.7.4.3 — Friction testing
5.8 — Alternative stay cable systems
5.9 — Guide pipe minimum design forces
5.10 — Extrados/low-fatigue stay systems
6.0 — INSTALLATION OF STAY CABLES
6.1 — Quality control program
6.2 — Fabrication
6.2.1 — General
6.2.2 — Prefabrication
6.2.3 — Site fabrication
6.3 — Handling of stay cable components
6.3.1 — Procedures
6.3.2 — Cable protection and coiling
6.3.3 — Equipment and lifting devices
6.3.4 — Damage and repair
6.4 — Packing and shipping
6.4.1 — Stay cable metallic components
6.4.2 — Strands, wires, and bars
6.4.2.1 — Bare strands and wires
6.4.2.2 — Bare bars
6.4.2.3 — Epoxy-coated, galvanized, or sheathed strand
6.4.3 — Anchor and socket assemblies
6.4.4 — Pipe
6.4.4.1 — High-density polyethylene pipe without tension element
6.4.4.2 — Steel pipe
6.4.5 — Preassembled cables with HDPE pipe
6.5 — Material site inspection
6.6 — Storage
6.6.1 — Requirements and limitations
6.6.2 — Facility
6.6.3 — Environmental control
6.7 — Pre-installation inspection
6.7.1 — Bare, epoxy-coated, galvanized, or sheathed strands and wire
6.7.2 — Bare strands and wires
6.7.3 — Epoxy-coated or sheathed strands
6.7.4 — Bar
6.7.5 — High-density polyethylene pipe
6.7.6 — Steel pipe
6.7.7 — Pre-assembled cable
6.7.8 — Anchors and socket assemblies
6.8 — Stay pipe assembly preparation
6.8.1 — High-density polyethylene pipe
6.8.1.1 — Pipe length
6.8.1.2 — Fusion welds
6.8.2 — Steel pipe
6.8.2.1 — Welding requirements
6.8.2.2 — Inspection for steel pipe welding
6.9 — Installation
6.9.1 — Installation program
6.9.1.1 — Cable alignment and centering devices
6.9.1.2 — Minimum cable forces
6.9.1.3 — Final acceptance of stay forces
6.9.2 — Vibration control
6.9.3 — Jacks and gauges
6.9.4 — Stressing
6.9.5 — Detensioning
6.9.6 — Installation records
6.9.6.1 — Monitoring
6.9.6.2 — Permanent records
7.0 — STAY CABLE INSPECTION AND MONITORING
7.1 — General
7.1.1 — Design considerations
7.1.2 — Inspection and maintenance
7.1.3 — Inspections
7.2 — Visual inspection of stays
7.3 — Condition evaluation
7.4 — Non-destructive evaluation and monitoring
7.5 — Frequency of inspection
7.6 — Monitoring of cable vibrations
7.7 — Cable inspection and maintenance manual
7.7.1 — Items for inspection and maintenance manual
8.0 — VIBRATION CONTROL SYSTEM PERFOR¬MANCE
8.1 — Requirements
8.2 — Working amplitudes
8.3 — Extreme amplitudes
8.4 — Operational conditions
8.5 — Amplitude effect on anchors
8.6 — Inherent structural damping
8.7 — Performance verification
9.0 — CITED REFERENCES
APPENDIX A—DETAILS OF “ONE PIN TEST”
APPENDIX B — SAMPLE OF GALVANIZED STRAND SPECIFICATIONS
APPENDIX C — CORROSION PROTECTION SYSTEM DETAIL
App.C.1 — Temporary corrosion protection
App.C.2 — Wrapping with protective tape
App.C.3 — Coating for steel pipe
App.C.3.1 — Shop-applied prime coat
App.C.3.1.1 — Surface preparation
App.C.3.1.2 — Prime coat preparation
App.C.3.1.3 — Prime coat application
App.C.3.1.4 — Quality inspection for prime coat
App.C.3.2 — Field-applied intermediate and finish coats
App.C.4 — Portland cement grout
App.C.4.1 — General
APPENDIX D — CONVERSION FACTORS SI TO US UNITS
APPENDIX E — ALTERNATE SADDLE FATIGUE TEST SETUP