Design of Post-tensioned Concrete Structures for Efficiency & Resilience

Leo Panian, SE Principal

ENGINEERING

"The Post-Tensioning Institute has met the standards and requirements of the Registered Continuing Education Program. Credit earned on completion of this program will be reported to RCEP at RCEP.net. A certificate of completion will be issued to each participant. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the RCEP."

Copyright Materials

This educational activity is protected by U.S. and International copyright laws. Reproduction, distribution, display and use of the educational activity without written permission of the presenter is prohibited.

© Post-Tensioning Institute 2022

Learning Objectives

At the end of this presentation, you will be able to...

- Identify strategies for designing safe and economical PT concrete flat-slabs for buildings
- Identify special considerations and effective approaches for designing longspan PT floors
- Identify key considerations for designing PT concrete transfer girders and other special structures
- Envision more robust, resilient **PT concrete systems for seismic resistance**

Overview

Design strategies for cost-effective and resilient buildings

Floor assemblies for economy, performance, and functionality

Long-span solutions, transfer girders, special-use structures

Seismic solutions, resilient design

PT Gravity Systems

Floor assemblies

Flat plates

Long-span beams, girders

Transfer girders

Conventional construction

Uncommon solutions

Cost-effectiveness, performance

PT Seismic Systems

Vertically stressed walls

Horizontally stressed beams

Unconventional

Improved seismic response

Resilience

Design Considerations

Constructability

Cost

Carbon

Performance

Deflections

Vibration

Drift

Concrete Floor Assemblies

Variety of buildings

Minimize materials, dimensions

Control deflections

Shoring, stressing, sequence

Formwork, concrete, rebar, PT

Courtesy of VSL

System Selection

One way

Two way

Span Efficiency

PT flat plate

PT slab with column caps

Courtesy of VSL

Slender profile, large span-to-depth

Limit deflection, punching shear at columns

Flat Slab Detailing

Coordinating rebar, tendons, anchorage, embeds, openings

Flat Slab Detailing

BANDED TENDONS MAY BE

Managing tolerances for cover, tendon drape

Student Housing

7-story, 184,000 gsf residential

Landscaped podium

Ground floor retail, student services

P3 project, early design collaboration with OAC team

Planning for economy

Two-way PT Flat Plate

Span arrangements, grids for max efficiency

- Adapt for irregular configuration
- Minimize building height

Slab Design

П

7" slabs

Detailed FEM for design & optimization

Performance validation

PT Slab Construction

Coordination of structural and nonstructural

HS Academic Building

Two-story art & science classroom

Exposed colored concrete

Long-span system for flexibility

One-way PT slab and girders

Floor Construction

8" slab, 23' span, 9' cantilevers

18" beams, 36' span

27" girders, 48' span

Floor Construction

Material efficiency

Deflection, vibration, acoustics

Program flexibility

Academic Building

Six-story campus building

Large tiered classrooms

Open collaboration areas

Long-span system for flexibility

Two-way slab with integral beams

Floor Assemblies

Form follows program

Span requirements

Ceiling heights

Floor Assemblies

Integrating one-way, two-way systems

Adapting to complex geometries

Floor Construction

Horizontal and vertical tendon curves, MEP integration

Floor Construction

Accommodating classrooms

Minimizing height

Deflection, vibration, acoustics

Superimposed loading

SF Conservatory of Music

Complex mixed-use – residential, student services, teaching, performance

Long-span Roof Structure

12" PT slab, 45' span

6" diameter steel columns

Articulating connections

Long-span Roof Structure

UCSF Treatment & Research Facility

Two way slabs and transfer girders

Slab and Girders

Adapting to complex program

Transfer Girders

Pair of integral girders

56' span, simply supported

4'-6" deep, 5'-0" wide

Continuously shored

Transfer Girders

Harped tendons, single-end stressing

- 27 0.6" diameter strands
- **Confined** anchorage zone

Fully grouted

Transfer Girders

Sequencing steps

Girder Construction

Girder Construction

Girder Construction
SF Convention Center

Howard Street Viaduct

Link below-grade exhibition areas

Provide 20'-0" min. ceiling

Accommodate street utilities

Isolate from traffic noise and vibration

Maintain conference facilities and traffic on Howard St. throughout construction

Howard Street Viaduct

Supports public roadway

Convention space below

Viaduct Structure

Combined criteria for AASHTO HS-20 truck and CBC emergency vehicle loading

6'-9" depth, 58' span

Long-span PT Girders

Harped tendon profiles

Deflection control

PT Girder Anchorage

Class C – Partially prestressed, cracked

Grouted, bonded tendon bundles

Viaduct Construction

Viaduct Construction

SF Convention Center

Resilient Seismic Design

Beyond structure

Cladding, Interiors, MEP

Beyond forces

Mode shaping & drift distribution Recentering Failure mechanism

Ductility & damage

Compatibility

Mode Shaping

Elastic Spine / Strongback / Mast

Uniform drift – eliminate soft stories

Minimize localized damage

Maximize system ductility

Protect building structure and systems

Recentering Systems

Post-tensioned walls, frames

PT for elastic restoring effect

Energy dissipation through yielding

Spring – Damper

Recentering Systems

Proportioned for flexural yielding

Well defined plastic hinge zone, confined boundaries

Capacity design, avoid shear failure, web crushing

Protect tendons – slenderness, unbonded

Recentering Parameter

Post-tensioning Ratio:
$$\gamma_{PT} = \frac{A_{PT}f_{PTi}}{A_{PT}f_{PTi} + A_sf_y}$$

University Academic Building

PT Concrete Walls for Seismic Resistance

Shear walls clustered around large classrooms

Paired orthogonal configuration to minimize torsion

PT Recentering Walls

Vertical unbonded PT

Uniform inter-story drifts

Improved protection for façade, interiors, MEP

PT Recentering Walls

Combination of mild steel and unbonded PT:

Steel ratio = .011

PT ratio = .48

P/A = 620 psi

Detailing for constructability

PT Wall Construction

PT Wall Construction

PT Wall Construction

Seismic Performance Criteria

Site-specific hazard

RSA for minimum design requirements

Fixed foundations

Rigid diaphragms

Detailed NLRHA for validation:

7 pairs of ground motions

4 hazard levels

EQ Hazard Spectra

Detailed Analytical Validation

Drift Response from NLRHA

Capacity Design for Shear

RSA vs NLRHA response

Amplified shear demands

Residual Drift

No permanent deformations

Limited damage

Enhanced resilience

Post EQ functionality

Drift

SFPUC HQ

First LEED Platinum office building in US Enhanced seismic performance Immediate occupancy mandate

SFPUC HQ Structure

Steel moment frame, viscous dampers

Concrete with PT cores

SFPUC HQ

Self-centering PT concrete core walls

Composite link beams

Hybrid mat foundation with micro-piles

Immediate occupancy post-earthquake

Composite Coupling Beams

PT Core Walls

Mild steel and unbonded PT: Steel ratio = .01 PT ratio = .38 P/A = 400 psi or .05 f'c

SFPUC HQ

NLRHA for detailed design and validation

Performance Based Design

Drifts for DBE

Construction

Mat foundation Tendon anchorage

Construction

Core walls

Tendon ducts
Construction

Composite link beams

Seismic Resilience

Self-centering

Superior seismic performance

Limited damage

Protection of building systems

Immediate occupancy

Cost effective

Take Aways

Design strategies for efficient & resilient buildings with PT concrete

Efficient floor assemblies

Special use long-span beams, transfer girders

Resilient, recentering shear walls for seismic resistance

This concludes the Educational Content of this activity

Leo Panian, SE l.panian@tippingstructural.com

