Do Not Circulate or Publish

Standard Requirements for Design and Analysis of Shallow Post-Tensioned Concrete Foundations on Expansive and Stable Soils

Public Comment November 2024

Standard Requirements for Design and Analysis of Shallow Post-Tensioned Concrete Foundations on Expansive and Stable Soils

Standard Requirements for Design and Analysis of Shallow Post-Tensioned Concrete Foundations on Expansive and Stable Soils

PTI DC-10: Slab-on-Ground Committee

Tony Childress Childress Engineering Services, Inc. Chair Dean Read MLAW Forensics, Inc. Vice Chair

John Bryant Bryant Consultants, Inc.

Darren (Dan) Buck Suncoast Post-Tension, Ltd.

Amy Dowell* American Concrete Institute

David Eastwood Geotech Engineering and Testing

Brian Eubanks Paragon Structural Engineering, LTD

*Nonvoting member

1 2

3

4

5

6

7

8

9

1 2

1 3

14

1 7

1 8

19

3 7

38 39

4 0

4 1

4 2

Vice Chair

Peter Fleming Geotechnical Testing & Inspections

Jack Graves Builders Post-Tension, Inc.

Don Illingworth Don Illingworth & Associates, Inc.

> Harley Nethken Tech-Con Systems, Inc.

Daniel Overton Engineering Analytics, Inc. Homer Parker Jr. Parker Engineering, Inc.

David Peralta Unintech Consulting Engineers

David Sparks *Felton Group, Inc.*

Tami Spicer STRAND

Ryne Stoker *Geotek, Inc.*

38800 Country Club Drive Farmington Hills, MI 48331 Phone: +1.248.848.3180 www.post-tensioning.org

43 PTI DISCLAIMER:

This publication is intended for the use of professionals competent to evaluate and implement the significance and limitations of its content and who will accept responsibility for the application of the contents. The incorporation by reference or quotation of material in this publication in any specifications, contract documents, purchase orders, drawings, product details, and job applications shall be undertaken at the sole risk of those persons, companies, or agencies making such reference or quotation and shall not subject the Post-Tensioning Institute, its Board of Directors, its members, and the authors of this publication to any liability, and those persons, companies, or agencies making such reference or quotation waive any claims against the Post-Tensioning Institute, its Board of Directors, its members, and the authors of this publication. Neither the Post-Tensioning Institute ("PTI") nor the authors of this publication in creating this publication makes any representation or warranty, express or implied, regarding the statements contained herein, including warranties of quality, accuracy, workmanship or safety, further including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. THE POST-TENSIONING INSTITUTE, ITS BOARD OF DIRECTORS, ITS MEMBERS, AND THE AUTHORS OF THIS PUBLICATION SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING CONSEQUENTIAL DAMAGES, WHICH MAY RESULT FROM USE OF ANY INFORMATION OR RECOMMENDATION PROVIDED IN THIS PUBLICATION.

> Copyright © 2024 By the Post-Tensioning Institute First edition, first printing, December 2012 Second edition, first printing, June 2019 Third edition, first printing, December 2024 Printed in U.S.A. ISBN 978-1-931085-60-1

> > Cover photo: courtesy of (TBD)

All Rights Reserved. This publication or any part thereof may not be reproduced in any form without the written permission of the Post-Tensioning Institute.

	TABLE	OF	CONTENTS
--	-------	----	----------

94 95	1.0 — SCOPE	3
96	2.0 — DEFINITIONS AND ABBREVIATIONS	4
97	2.1 — Definitions	4
98 00	2.2 — Abbreviations	7
99 100 101	3.0 — NOTATION	7
101	4.0 — STRUCTURAL ANALYSIS AND DESIGN	14
103	4.1 — General	14
104	4.1.1 — Overlapping rectangles	14
105	4.1.2 — Perimeter load	15
106	4.1.3 — Concentrated loads	16
107	4.1.4 — Loss of prestress	16
108	4.2 — Ribbed foundations	18
109	4.2.1 — Minimum slab thickness	19
110	4.2.2 — Ribs	19
111	4.2.3 — Minimum prestress force for ribbed	
112	foundations	20
113	4.2.4 — Soil-bearing pressure	20
114	4.3 — Uniform thickness foundations (UTFs)	20
115	4.3.1 — UTF conversion	21
116	4.3.2 — Minimum prestress force for UTFs	21
110	4.3.3 — Soil-bearing pressure	21
118		- 11
119	5.0 — FLEXURE	21
120	5.1 — Edge drop	22
121	5.1.1 — Long direction	22
122	5.1.2 — Short direction 5.1.2 — Design Momenta	23
123	5.2 Edge lift	23
124	5.2 — Euge Int 5.2 1 — Long direction	23
125	5.2.1 — Long direction	23
120	5.2.2 — Design Moments	23
128	5.3 - Allowable stress	23
129	5.5 — Cracked sections	24
130		2.
131	6.0 — SHEAR	24
132	6.1 — Applied concrete shear stress	24
133	6.1.1 — Ribbed foundations	24
134	6.1.2 — UTFs	25
135	6.2 — Edge drop	25
136	6.2.1 — Long direction	25
137	6.2.2 — Short direction	25
138	6.3 — Edge lift	25
139	6.3.1 — Long and short direction	25
140	6.4 — Allowable stress	26

7.0 — STIFFNESS	26
8.0 — GENERAL	27
8.1 — Soils	27
8.1.1 — Field investigation and laboratory testin	ng 27
8.1.2 — Expansive soils	27
9.0 — SOIL PARAMETERS	28
9.1 — Edge moisture variation distance e_m	29
9.1.1 — Soil parameters	29
9.1.2 — Matrix suction compression index γ_h	30
9.1.3 — Modified unsaturated diffusion	
coefficient α'	34
9.1.4 — Weighted average of α'	35
9.1.5 — Determination of e_{m}	35
9.2 — Differential soil movement y_{m}	36
9.2.1 — Determination of y_{m} by computer method	s 36
9.2.2 — Determination of y_{m} by other methods	39
9.3 — Moisture barriers	40
9.3.1 — Vertical barriers	42
9.3.2 — Horizontal barriers	42
10.0 — Materials	42
10.1 - Concrete	42
10.2 — Reinforcement	43
10.2.1 — Prestressed reinforcement	43
10.2.2 — Non-prestressed reinforcement	43
10.2.3 - Cover to reinforcement	43
10.3 — Anchors	43
10.4 — Durability	44
11 0- REFERENCES	46
11.1 — Referenced standards and reports	46
11.2 — Cited references	47
Appendix	48

143	1.0 – SCOPE
144	
145	This standard is intended to be used by licensed
146	design professionals (LDPs) and provides minimum
147	requirements for the design of shallow post-tensioned
148	concrete foundations on expansive and stable soils.
149	Internal forces and stiffness requirements specified
150	in this standard shall be used for design of all ribbed
151	and uniform-thickness post-tensioned foundations
152	built on soils that satisfy the criteria specified in
153	Section 8.1.
154	
155	
156	
157	
158	
159	
160	
161	
162	
163	
164	
165	
166	
167	
168	
169	
170	
171	
172	
173	
174	
175	
176	
l / /	
1/8	
1/9	
100	
101	
102 192	
103	
104	
100	

187

188

189

190

191

141

142

RECOMMENDATIONS

1.0 - SCOPE

C1.0 - SCOPE

COMMENTARY

This combined standard, incorporating both geotechnical and structural standards into a single document, is based on principles of unsaturated soil mechanics for predicting support conditions, internal forces, and stiffness requirements affecting shallow concrete foundations built on and interacting with expansive soils. Additionally, this standard applies to post-tensioned slabs on stable soils.

Shallow post-tensioned concrete foundations are commonly used in single-family and multi-family residential, light commercial, and low-rise commercial construction.

The following foundation types are defined:

- PTI-1: Lightly reinforced slabs on stable soils. These slabs may be post-tensioned to eliminate joints required in unreinforced slabs and/or to control shrinkage and temperature cracking (which can occur before the tendons are stressed), and load transfer, in accordance with the provisions of this standard (Section 4.1.3). These slabs are usually built on stable soils.
- PTI-2: Reinforced and stiffened slabs on expansive soils
- PTI-3: Uniform thickness slabs on expansive soils

The soil-structure interaction codified herein is applicable to all shallow foundations built on expansive soils. regardless of the type of reinforcement (prestressed or nonprestressed), within the limitations stated herein.

Design methods for concrete foundations on expansive soils, which yield smaller values of internal forces and stiffness requirements than those specified in this standard (PTI-2 and PTI-3 slabs), may result in inadequate foundation strength and underestimation of foundation stiffness.

This combined standard does not address compressible, or collapsible soils. Post-tensioned foundations can be used for these types of soils by using other rational design methods.

Post-tensioned concrete foundations designed by this standard generally meet the requirements for plain concrete specified in Chapter 14 of ACI 318-14.1 These foundations will typically contain less reinforcement-prestressed and non-prestressed—than the ACI 318 requirements for reinforced concrete. This standard is intended to be a

COMMENTARY

stand-alone document uniquely developed for the design of post-tensioned concrete foundations on expansive and stable soils and is supported by the performance of many thousands of existing conformant foundations. As such, it is intended that this standard be independent of ACI 318 and the conflicting parts of the general building code into which this standard is incorporated.

This standard is based on PTI DC10.1-08.² Refer to this document and the commentary to this standard for back-ground and interpretational information that clarifies its application.

C2.0 — DEFINITIONS AND ABBREVIATIONS

2.1 – Definitions

Edge drop – a soil-structure distortion mode wherein 213 the soil moisture content at the perimeter of the 214 foundation is typically lower than the soil moisture 215 content beneath the center of the foundation. Alter-216 natively referred to as center lift (Fig. C2.1).

2.0 - DEFINITIONS AND ABBREVIATIONS

Edge lift – a soil-structure distortion mode wherein
the soil moisture content at the perimeter of the foundation is typically higher than the soil moisture content
beneath the center of the foundation (Fig. C2.1).

C2.1 — Definitions

EDGE DROP

Fig. C2.1—Edge drop and edge lift.

RECOMMENDATIONS

308 Licensed design professional (LDP) – design
309 professional licensed in the state in which they
310 are practicing and qualified in the area under their
311 responsible charge.

Noncompliant rectangle – a rectangle which can be
mathematically generated from a slab geometry but
which does not include the properties to be either
a primary design rectangle or secondary design
rectangle.

319 Post-construction suction envelope – a design
320 envelope that assumes the foundation is constructed
321 when the soil at the site may be in a condition of
322 extreme dryness from a prolonged dry period or
323 extreme wetness from a prolonged wet period.
324

Post-equilibrium suction envelope – a design
326 envelope that assumes the foundation is constructed
327 when the soil at the site will likely be in a condition
328 near or at equilibrium.

330 Primary design rectangle – a design rectangle
331 encapsulating the most contiguous portions of the
332 foundation which represents the largest portion of
333 the foundation and has congruency in both direc334 tions and includes the maximum perimeter boundary
335 conditions practical (Fig. C2.2).

COMMENTARY

Fig. C2.2 — Primary design rectangle example.

A given design may include multiple primary design rectangles.

- 356 **RECOMMENDATIONS**
- 357 358
- 359
- 360
- 361
- 362
- 363
- 364
- 365
- 200
- 366
- 367

398 399

400

401

402

403 404

405

406

IDATIONS

COMMENTARY

Primary design rectangles may include small sections of void within the continuity.

A portion of the primary design rectangle may exist outside the footprint.

The primary design rectangle should provide reasonably accurate moments in both directions based upon the aspect ratio of the true footprint of the foundation.

 PRIMARY DESIGNALE

Fig. C2.3 – Secondary design rectangle example.

Secondary design rectangles are not required for small projections from the primary design rectangles, when deemed structurally insignificant by the licensed design professional.

The licensed design professional should use sound engineering judgment as well as past experience on the design of the interface of these appendages.

368 **Ribbed foundation –** a foundation system consisting
369 of a uniform thickness slab with ribs that satisfy the
370 requirements of Section 4.2.2 and project downward
371 from the bottom of the slab in both directions. The
372 slab and ribs are considered to act monolithically.

slab and ribs are considered to act monolithically.

374 Secondary design rectangle – a design rectangle
375 which includes specific portions of the foundation
376 which extend outside the limits of the primary design
377 rectangle (Fig. C2.3).
378

407	RECOMMENDATIONS	COMMENTARY
408	Chifference for numbered of this standard muchust of	
409	Stiffness – for purposes of this standard, product of	
410	E_{cr} and I .	
411		
412	Uniform thickness foundation (UTF) – a foundation	
413	system consisting of a solid slab of uniform thickness	
414	with no interior ribs.	
415		
416		
417	2.2 – Abbreviations	
418	CGC = geometric centroid of gross concrete section	
419		
420	CGS = center of gravity of prestressing force	
421		
422		
423	3.0 — NOTATION	C3.0 — NOTATION
424		
425		Equations in this standard are unit-specific—that is, vari-
426		ables must be entered with units specified in this section.
427		
428		Sign convention used for force or stress throughout this
429		standard is tension (negative) and compression (positive).
430		Moments are positive if producing tension at the bottom of
431		the foundation and negative if producing tension at the top
432		of the foundation.
433		
434		Unless specifically stated otherwise, all foundation param-
435		eters (geometry, internal forces, prestress force, reinforce-
436		ment, and so on) are based on the entire cross section or full
437		width of the section being designed.
438		
439	A = area of gross concrete cross section in direction	
440	being considered, in. ²	
441		
442	A_b = bearing area beneath tendon anchor, in. ²	
443		
444	$A_{b'}$ = maximum area of portion of bearing surface	
445	that is geometrically similar to and concentric with	
446	tendon anchor, in. ²	
447		
448	A_{bm} = total area of rib concrete = <i>nbh</i> , in. ²	
449		
450	$A_o = \text{coefficient in equation for } M_L$	
451	A hold on a straight for the t	
452	A_{ps} = total cross-sectional area of prestressed	
453	reinforcement, in. ²	
454		
433	A_s = ioial cross-sectional area of non-prestressed	
436	reiniorcement, in. ²	

457	RECOMMENDATIONS	COMMENTARY
458		
439 460	A_{sl} = total cross-sectional area of slab concrete, in. ²	
461 462	A_v = area of rib shear reinforcement, in. ²	
463 464	B = constant used in equation for M_L	
465 466	B_w = assumed slab width, in.	
467 468	b = width of individual rib, in.	
469 470	C = constant used in equation for M_L	
471 472 473 474	C_s = coefficient to increase or decrease the required stiffness based on building materials and their reaction to movement	
475 476	CR = prestress loss due to creep of concrete, kip	
477 478 479	c = distance between CGC and extreme cross section fibers, in.	
480 481	E_c = modulus of elasticity of concrete, psi = 57,000 $\sqrt{f_c}$	
482 483 484	E_{cr} = long-term or creep modulus of elasticity of concrete, psi	Unless specific testing shows a refined value is justified, E_{cr} may be assumed to be $0.5 \times E_c$.
485 486	EI = expansion index	
487 488 489	<i>ES</i> = prestress loss due to elastic shortening of concrete, kip	
490 491 492	E_{st} = modulus of elasticity of non-prestressed reinforcement, psi	
493 494	e = base of natural (Naperian) logarithms	
495 496 497	e_1 , e_2 = void ratios corresponding to respective over- burden pressures P_1 and P_2	
498 499 500 501	e_m = edge moisture variation distance: distance measured inward from slab edge in which soil mois- ture content may vary, ft	
501 502 503 504 505	e_p = eccentricity of post-tensioning force: distance between CGS and CGC; positive when CGS is above CGC and negative when CGS is below CGC, in.	
506 507 508	F_f = fabric factor used to modify unsaturated diffusion coefficient (α) for presence of roots, layers, fractures, and joints	

509 510	RECOMMENDATIONS	COMMENTARY
511 512	f = applied flexural concrete stress, psi	
512 513 514 515	f_{bp} = allowable bearing stress under tendon anchors, psi	
516 517 518	f_c = allowable compressive flexural stress in concrete, psi	
519 520 521	f_c' = specified compressive strength of concrete at 28 days, psi	
522 523 524	f_{ci} = concrete compressive strength at time of stress- ing tendons, psi	
525 526 527	f_{cr} = concrete modulus of rupture: flexural tension stress that produces cracking, psi	
528 529 530 531	f_e = effective tendon stress after losses due to elastic shortening, creep and shrinkage of concrete, and steel relaxation, psi	
532 533 534 535	f_{ρ} = minimum average of effective compressive stress due to prestress	
535 536 537 538 539	$rac{1000P_r}{A}$,psi	
540 541 542	f_{pi} = allowable tendon stress immediately after stress- ing, psi	
543 544 545	$f_{\rho j}$ = allowable tendon stress due to tendon jacking force, psi	
546 547 548	$f_{\rho u}$ = specified tensile strength of prestressing steel, psi	
549 550	f_{py} = specified yield strength of prestressing steel, psi	
551 552	f_t = allowable flexural tension stress in concrete, psi	
553 554 555	f_y = specified yield strength of non-prestressed reinforcement, psi	
556 557	fc = percentage of fine clay	
558	g = moment of inertia factor	

559	RECOMMENDATIONS
560	
561	H = thickness of uniform thickness foundation (UTF),
562	in.
563	
564	h = total depth of rib. measured from top surface of
565	slab to bottom of the rib. in.
566	
567	I - aross moment of inertia of cross section in 4
569	
508	I - Thornthwaita maiatura inday
509	
570	
572	
573	
574	
575	
576	
577	
578	
579	
580	
581	
582	
583	
584	
585	
586	
587	
588	
500	
509	
590	/ depth to neutral avia ratio
591	k = deptil-to-neutral-axis ratio
592	/
593	$K_{\rm s}$ = soil subgrade modulus, ib/in. ³
594	
595	L = toundation length (or length of design rectangle)
596	in direction being considered (short L_s or long L_L),
597	perpendicular to W, ft
598	
599	<i>LL</i> = liquid limit, %
600	
601	L_L = long dimension of design rectangle, ft
602	
603	$L_{\rm s}$ = short dimension of design rectangle, ft
604	
605	M_{l} = maximum applied service load moment in long
606	direction from either edge drop or edge lift: positive if
607	producing tension at bottom of foundation, negative
608	if producing tension at top of foundation. ft-k/ft
000	

COMMENTARY

This index I_m is derived from agricultural soil science³ and is based, on average, over an extended period of time (for example, 20 or 30 years) of the rainfall in excess or deficit of average evapotranspiration rates. An I_m of zero would indicate that, on average, rainfall equals the evapotranspiration over an extended period of time. An I_m that is negative indicates a sustained moisture deficit averaged over an extended period of time. Similarly, a positive I_m indicates moisture in excess of the evapotranspiration rate averaged over an extended period time. Maps are included in the appendix of this standard to estimate the I_m in various parts of the United States (Appendix Fig. A.1), with enlarged maps of the states of Texas and California (Appendix Fig. A.2 and A.3). This long-term average I_m is correlated only with the equilibrium suction at depth in absence of overriding factors (Fig. 9.11). It should not be used to estimate the effect of surface conditions, such as lawn irrigation, or the effects of flower beds and trees. These conditions should be addressed by other methods that are in this standard and commonly require computer modeling.

609	RECOMMENDATIONS	COMMENTARY
610		
611	$M_{\rm S}$ = maximum applied service load moment in short	
612	direction from either edge drop or edge lift; positive if	
613	producing tension at bottom of foundation, negative	
614	if producing tension at top of foundation, ft-k/ft	
615		
616	n = number of ribs in cross section in direction being	
617	considered	
618		
610	n_{-} - total number of tendons in direction being	
620	considered	
621	Considered	
622	P - uniform unfactored line load acting along ontire	
622	I have been a series which includes weight of	
624	evidence well and these participa of superstructure	
024	dead and live leads that frame into exterior well	
625	dead and live loads that frame into exterior wall,	
626	excluding any foundation concrete weight, ib/it	
627	D/ planticity index 0/	
628	PI = plasticity index, %	
629	D/ plantin limit 0/	
630	PL = plastic limit, %	
631	D offertive exections force in tender often lesses	
632	P_e = effective prestress force in tendon after losses	
633	due to elastic shortening, creep and shrinkage of	
634	concrete, and steel relaxation, kip	
635		
636		
637	$P_e = P_i - ES - CR - SH - RE$	
638		
639		
640	P_i = prestress force in tendon immediately after	
641	stressing and anchoring tendons considering effects	
642	of tendon friction, kips	
643		
644	P_r = effective prestress force in concrete after losses	
645	due to tendon friction, elastic shortening, creep and	
646	shrinkage of concrete, steel relaxation, and subgrade	
647	friction, kip	
648		
649		
650	$P_r = P_e - SG$	
651		
652		
653	$P_{\rm s}$ = prestress force at jacking end immediately before	
654	anchoring tendons, kip	
655		
656	P_1 , P_2 = overburden soil pressures corresponding to	
657	void ratios e_1 and e_2 , psi	

050	NEOONMENDATIONO
659	
660	pF = soil suction value expressed as common loga-
661	rithm of height of water (in cm) that suction energy
662	can support
663	
664	
665	
666	
667	
668	
669	
670	
671	α = allowable soil bearing pressure lb/ft ²
672	q _{allow} – anowable son bearing pressure, is/n
673	$a_{\rm r}$ – unconfined compressive strength of soil $1b/ft^2$
674	q_u = uncommed compressive strength of soil, ib/it
675	PE - prostross loss due to steel relevation kin
676	ML = prestress loss due to steel relaxation, kip
670	r area ratio
0//	$T_1 = \text{area ratio}$
6/8	C interior stiffening with encoding used for recorded
679	S = Interior stiffening rib spacing used for moment
680	and snear equations, ft
681	
682	S_B = section modulus with respect to bottom fiber, in. ³
683	
684	$S_{\rm S}$ = slope of suction versus volumetric water content
685	curve
686	
687	S_{τ} = section modulus with respect to top fiber, in. ³
688	
689	s = spacing of rib shear reinforcement, in.
690	
691	SCF = stress change factor; used in determination of y_m
692	
693	SF = shape factor; unitless measure of foundation
694	irregularity
695	
696	SG = reduction in compressive force on concrete
697	cross section caused by subgrade friction, kip
698	
699	SH = prestress loss due to concrete shrinkage, kip
700	
701	t = slab thickness in ribbed foundation. in.
702	
703	$V_{\rm c}$ = maximum shear force in long direction under-
704	service load from either edge drop or edge lift kin/ft
705	
706	$V_{\rm c}$ = maximum shear force in short direction under
707	service load from either adap drop or adap lift kin/ft
101	service load norn enner edge drop of edge int, NP/It

658

COMMENTARY

Soil suction quantifies the energy level in the soil-moisture system. An imbalance of total soil suction between either the environment or adjacent soil tends to drive moisture toward a higher soil suction value. Soil suction can be expressed as pF, which is the logarithm to the base 10 cm of a column of water that could be theoretically supported by the energy level described, as a direct measurement of the height of a column of water (in cm), or as a negative pressure in lb/ft². $pF = \log(MPa \times 10,197)$, where pF is the log of the height of an equivalent column of water (in cm) having the reference pressure at its base.

708	RECOMMENDATIONS	COMMENTARY
709 710 711	v = applied shear stress under service load, psi	
712 713	v_c = allowable shear stress in concrete, psi	
714 715 716 717	W = foundation width (or width of design rectangle) in direction being considered (short or long), perpendicular to <i>L</i> , ft	
717 718 719	W_{slab} = foundation weight, lb	
720 721	w = unit weight of concrete, lb/ft ³	
722 723 724 725 726 727 728 729 730 731 732 733 734	<i>y_m</i> = maximum unrestrained differential soil movement, in.	If the soil beneath the slab experiences a change in its mois- ture content after construction of the slab, it will distort into either an edge drop mode (also termed "edge drying," "center heave," "center lift," or "doming") or an edge lift mode (also called "edge swell," "edge heave," or "dishing"). The amount of differential soil movement y_m to be expected depends on a number of conditions, including the type and amount of clay mineral, depth of clay layers, uniformity of clay layers, the initial wetness, the depth of the active zone (depth of soil suction variation), and the velocity of mois- ture infiltration or evaporation, as well as other less easily measured and controlled effects.
735 736 727	$y_{m shrink} = y_m$ value for edge drop, in.	
738 739	$y_{m swell} = y_m$ value for edge lift, in.	
740 741	$z = $ smaller of L or 6β in direction considered, ft	
742 743 744 745 746 747 748 749 750 751 752 753	z_m = moisture active zone: depth below soil surface at which suction varies by less than 0.027 <i>pF</i> /ft α = unsaturated diffusion coefficient: measure of moisture movement in unsaturated soils	The moisture active zone z_m for expansive soils refers to the depth below the ground surface at which a change in moisture content (and hence a change in suction value) can be expected due to environmental or other causes. The depth of this zone is also the location of the equilibrium moisture content, whether related to generally uniform soil conditions with environmental influences or to other conditions, such as a cemented layer or water table. The movement active zone is usually less deep than the moisture active zone due to overburden restraint.
754 755 756	α' = unsaturated diffusion coefficient modified by soil fabric factor: $\alpha' = \alpha F_f$	

757	RECOMMENDATIONS
758	
759	$\alpha'_{shrink} = \alpha'$ value for edge drop
/60 761	/ / / / / / / / / / / / / / / / / / /
762	$\alpha'_{swell} = \alpha'$ value for edge lift
763	β = approximate distance from edge of foundation to
764	point of maximum moment; function of relative stiff-
765	ness of soil and foundation, ft
766	
767	
768	$\beta = \frac{1}{12} \frac{4}{1000}$
769	12 ¥ 1000
//0	
//1 772	we abange of coll volume for unit abange in quation
773	γ_h = change of soli volume for unit change in suction corrected for actual percentage of fine clay; also
774	referred to as matrix suction compression index
775	
776	
777	
778	
779	
780	
781	and table of few barrans diese the
782 783	$\gamma_{h \ mod} = \gamma_{h}$ Weighted for layered solls
784	$\gamma = \gamma$ value for center lift
785	Th mod shrink - Th mod Value for certier int
786	γ_{t} and $\gamma_{t} = \gamma_{t}$ and value for edge lift
787	'n moa sweii 'n moa
788	γ_0 = change of soil volume for unit change in suction
789	for 100% fine clay
790	
/91 702	μ = coefficient of friction between foundation and
792 793	subgrade
794	
795	4.0 - STRUCTURAL ANALYSIS AND DESIGN
796	
797	
798	4.1 – General
799	
800	4.1.1 – Overlapping rectangles
801	Design criteria specified in this standard are based
802 803	on a rectangular ribbed foundation. Foundation
804	snapes that up not consist of a single rectangle shall be modeled with overlapping design rectangles that
805	are as large as possible with each design rectangles

as possible, with each design rectangle 806 analyzed separately. Each design rectangle shall

COMMENTARY

The maximum moment does not occur at the point of actual soil-slab separation but at some distance farther toward the interior. The location of the maximum moment can be closely estimated by β —a length that depends on the relative stiffness of the soil and the stiffened slab. The location of the maximum shear is between the edge of the slab and β .

This is a soil property that can be determined by various means of testing, which are described in more detail later in this standard. It is analogous to the compression index used in settlement analysis in saturated soil mechanics. It is defined as the change in volume related to a change in suction for an intact specimen of soil. The change of suction is similar to the change in effective stress in settlement analysis but has a more complex relationship.

C4.1.1 — Overlapping rectangles

Primary attention should be given to rectangles that most reasonably represent the main portion of the foundation. Long, narrow rectangles may not represent the overall foundation and in most cases should not govern the design. PTI DC10.1-08² provides examples of the overlapping rectangle method.

807 808	RECOMMENDATIONS	CC
809 810 811 812	have slab and rib geometry consistent with that of the actual foundation within the area of the design rectangle.	The shape factor (SF) i uous slab perimeter di contiguous slab.
813	Where a Secondary Design Rectangle is selected,	SF = (foundation perin
814 815 816 817 818	design requirements in the short direction do not apply to the area which overlaps the Primary Design Rectangle and the Primary Design Rectangle shall control the design.	The simplified shape fa the perimeter of the sin lapping rectangles, so simplified shape of the
819 820		SSE = (asymbian d and
821 822		(area of overlapping re
822		Additional considerati
824		is required when the
825		greater than 24.
826		-
827		The shape factor (SF)
828 829		tion's irregularity. Ex
830		the same expansive so
831		changes, a small square
832		than a large, irregularl
833		
834		The SF and SSF identifi
835		dation shape necessitat
830		1.00E 1.00 (1
838		If SF exceeds 32 or the
839		consider one of more of
840		 Modifications
841		the shape facto
842		• Strengthened
843		stiffening ribs
844		torsion or non
845		Geotechnical
846		barriers, moi
047 848		injection) to i
849		should reduce
850		and v to le
851		und y _{m-edge} to R
852		

853 4.1.2 – Perimeter load

When *P* varies, use the largest value for the edge drop
design and the smallest value for the edge lift design.

COMMENTARY

The shape factor (SF) is determined by dividing the contiguous slab perimeter dimension, squared, by the area of the contiguous slab.

 $SF = (foundation perimeter, ft)^2/(foundation area, ft^2).$

The simplified shape factor (SSF) is determined by dividing the perimeter of the simplified shape of the combined overlapping rectangles, squared, divided by the area of the simplified shape of the combined overlapping rectangles.

SSF = (combined overlapping rectangle perimeter, $ft)^{2/2}$ (area of overlapping rectangles, ft^{2}).

Additional consideration regarding the foundation design is required when the SF is greater than 32 or the SSF is greater than 24.

The shape factor (SF) is a unitless measure of a foundation's irregularity. Experience has shown that the shape of a foundation affects its performance. For example, on the same expansive soil experiencing the same moisture changes, a small square foundation will perform differently than a large, irregularly shaped foundation.

The SF and SSF identifies those foundations, where the foundation shape necessitates additional attention in the design.

If SF exceeds 32 or the SSF exceeds 24, the designer should consider one or more of the following:

- Modifications to the foundation footprint to reduce the shape factor
- Strengthened foundation systems (additional stiffening ribs or deepened ribs in areas of high torsion or non-prestressed reinforcement)
- Geotechnical approaches (such as moisture barriers, moisture conditioning, or moisture injection) to reduce the shrink/swell potential of the supporting soils. Geotechnical approaches should reduce $y_{m-center}$ to less than 2.0 in. (5.08 cm) and y_{m-edee} to less than 1.0 in. (2.54 cm).

C4.1.2 — Perimeter load

The mathematical analysis forming the basis for the equations for internal forces and deflections⁴ in this standard consider perimeter loads between 600 and 1500 lb/ft.

858 859

- 860
- 861
- 862
- 863 864
- 865
- 866
- 867
- 868
- 869
- 870
- 871 872
- 873
- 873 874
- 875
- 875
- 876
- 877
- 878
- 879
- 880 881

882 4.1.3 – Concentrated loads

Concentrated loads shall be evaluated on an individual basis. If the slab stresses produced by concentrated loads exceed those permissible, the loads shall
be framed to adjacent ribs in ribbed foundations, or a
footing shall be placed below them.

889 4.1.4 – Loss of prestress

890 Effective prestress force in the concrete after all891 losses shall be

 $P_r = P_i - ES - CR - SH - RE - SG$

- 892
- 893
- 894
- 895
- 896

For determination of the minimum effective prestress
force *Pr*, *SG* shall be calculated as follows:

 $SG = \left(\frac{W_{slab}}{2000}\right)\mu$

- 903 904
- 904 905

900

901

902

905 906

COMMENTARY

Based on successful experience with foundations built with perimeter loads up to and exceeding 2500 lb/ft that have been designed using these equations, the PTI Slab-on-Ground Committee is confident that the equations will yield reasonable results for perimeter loads in excess of those used in the research. Note that the definition of *P* includes the dead and live load in both swell modes. Removing the live load in the edge lift swell mode may result in unnecessarily conservative edge lift moments because the equations in this standard were derived from foundationdeformation computations that considered the foundation loaded with both a dead and live load. In the edge lift swell mode, designers may use the dead load and sustained live load, or dead load only, if either is judged to be appropriate.

In addition to the variable edge load P, internal forces and stiffness requirements specified in this standard are based on uniform applied loads acting on an entire foundation plan area of a 40 lb/ft² live load and a 65 lb/ft² dead load, representing the weight of an assumed 4 in. (10.16 cm) slab plus 15 lb/ft² for non-bearing partitions and other interior dead loads.

C4.1.3 — Concentrated loads

Equations for flexural stresses from concentrated loads may be derived from the beam-on-elastic foundation theory.

C4.1.4 — Loss of prestress

The effective prestressing force in post-tensioned foundations is further reduced by the frictional resistance to movement of the foundation on the subgrade during stressing, as well as the frictional resistance to dimensional changes due to concrete shrinkage, creep, and temperature variations. The largest amount of prestress loss due to subgrade friction occurs in the center of the foundation. The greatest structural requirement for prestress force, however, is at the location of the maximum moment, which occurs at approximately one β -length inward from the edge of the foundation.

ES, *CR*, *SH*, and *RE* can be calculated with generally accepted methods for estimating losses in prestressed concrete.⁵ Total prestress loss (after the effects of tendon friction) is the sum of *ES*, *CR*, *SH*, and *RE*. In lieu of calculating such losses, a value of $P_e = (0.7f_{pu} - 15 \text{ ksi}) \times A_{ps}$ may be assumed for the low-relaxation strand.

RECOMMENDATIONS

909 For determination of the effective prestress force P_r 910 used in the flexural and shear stress calculations, SG911 shall be calculated as follows

 $SG = \left(\frac{W_{slab}}{2000}\right) \left(\frac{\beta}{L/2}\right) \mu$

 Ω^{18} where β and *L* are in the direction being considered.

COMMENTARY

The expression for P_i assumes a high-side friction "wobble" coefficient of 0.002 (refer to ACI 423.10R-16, Table 4.4.2),⁶ and one-end tendon stressing (that is, P_i is assumed to act at the far end of the tendon). In lieu of more detailed analysis, a value of $P_i = P_s/(1 + 0.002L)$ may be used. Typically, $P_s = 0.8A_{ps}f_{pu}$.

SG does not directly affect the tendon force. However, it has the same effect as reducing the prestress force acting on the concrete cross section and, therefore, for simplicity, can be conveniently and mathematically grouped with the other factors that actually affect the force in the tendon. The expression for SG used for the determination of the minimum average compressive stress due to prestress represents the maximum effect of subgrade friction, which occurs at the center of the foundation, where the frictional force-resisting movement is based on the weight of half of the slab—that is, $W_{slab}/2$. Because the maximum structural requirement occurs at a distance β from the edge of the foundation, the expression for SG used to determine the flexural and shear stress equations represents the prestress force at the location of the maximum structural requirement.

An extensive review of the technical literature was made in order to determine the value of the coefficient of friction that might be expected during tendon stressing. As a result of this review three factors were identified as having an important effect upon the coefficient of friction. These factors are: 1) the amount of movement the slab experiences as a result of shrinkage and temperature effects between the time it is cast and the time it is prestressed, 2) temperature of soil at time of stressing, and 3) the material over which sliding occurs.

A large force is required to induce movement when the slab has not been previously moved. Once this "first movement" displacement has occurred, subsequent movements require only a fraction of the force initially necessary for movement. Research also shows that if slab movements remain very small, the coefficient is also smaller than the maximum value.

Figure C4.1 is representative of the effect different sliding mediums have on the magnitude of the friction coefficient. As can be seen in Fig. C4.1, even if polyethylene is not required or specified as a vapor retarder, it may prove desirable to place it below the slab in order to achieve a reduction in the friction coefficient.

COMMENTARY

Fig. C4.1 Summary of Coefficients of friction for 5 in. slabs

Measured slab movements indicate that concrete placement during hot weather results in effective coefficient of friction values in the range of 0.50 - 0.60 for uniform thickness foundations cast on polyethylene sheeting.

Concrete placement during cold weather may result in higher coefficients. The effective coefficient for these conditions ranges between 0.60 and 0.75 for polyethylene.

For slabs cast directly on a sand layer, the coefficient has an effective value between 0.75 and 1.00.

Ribs act to increase friction. Thus, μ values of 0.75 and 1.00 for polyethylene sheeting and sand, respectively, appear to be reasonable design values for ribbed foundations.

For normal construction practices, μ should be taken as 0.75 for slabs on polyethylene and 1.0 for slabs cast directly on a sand base. For other materials, refer to Fig. C4.1.

998 4.2 – Ribbed foundations

999 Calculations for ribbed foundations shall be based on 1000 criteria specified in Sections 4.2.1 to 4.2.4.

C4.2 — Ribbed foundations

Equations in this standard for internal forces and stiffness requirements are based on shallow ribbed foundations. Ribbed foundation variables appearing in these equations are L, S, h, P, e_m , and y_m , as defined in Section 3.0. Limitations and constraints for these variables are stated in this section. The equations are valid for ribbed foundations that are in conformance with these limitations.

1007	RECOMMENDATIONS	
1008		
1009		С
1010		tł
1011		c
1012		ti
1013		fı
1014		SI
1015		e
1016		u
1017		
1018		
1019	4.2.1 – Minimum slab thickness	
1020	Minimum slab thickness <i>t</i> shall be 4 in. (100 mm).	
1021		
1022	4.2.2 – Ribs	
1023		
1024	4.2.2.1 – Minimum size	
1025		
1026	4.2.2.1.1 — Rib depth	
1027	Minimum rib depth h shall be the larger of $(t + 7)$	Т
1028	in. ([t + 180] mm) or 11 in. (280 mm). When more than	tł
1029	one rib depth is used in the calculations, the ratio	tł
1030	between the maximum and minimum rib depths shall	c
1031	not exceed 1.2.	e
1032		W
1033		tł
1034		tł
1035		SI
1036		a
1037		n
1038		
1039		
1040	4.2.2.1.2 — Rib width	
1041	Rib width used in section property calculations	
1042	shall neither be less than 6 in. (150 mm) nor greater	aj
1043	than 14 in. (360 mm).	tł
1044		sl
1045		ri
1046		li
1047		tł
1048		ri
1049		to
1050		8
1051		C
1052		n
1053		а
1054		C:
1055		11
1056		

COMMENTARY

Conditions exist that require larger gross section properties than required to resist the applied forces due to swelling clays. Geometry resulting in larger gross section properties may be used for actual construction. For example, frost depth often requires the use of perimeter ribs that are substantially deeper than those required in the design for expansive soil movement. Designers should consider the use of additional reinforcement in these deeper rib sections.

C4.2.2.1.1 — Rib depth

The depth of ribs h is usually the controlling parameter in the structural design of ribbed foundations. Rib depth is the structural parameter that most influences the moment capacity and shear capacity in the ribbed foundation. The equations for internal forces and stiffness in this standard were derived assuming a uniform moment of inertia across the full width of the foundation, implying that all ribs are the same depth.⁴ Successful experience exists, however, supporting the use of different rib depths in design (such as a deeper edge rib), provided that the depths do not vary by more than 20%.

C4.2.2.1.2 — Rib width

The width of ribs *b* affects the soil-bearing capacity, the applied shear stress, and all section properties. To ensure the accuracy of equations for applied service moments, shears, and stiffness (in which *b* does not appear), the rib width used in section property calculations must be limited to a range of 6 to 14 in. (150 to 360 mm). Within this range, the flexural design is virtually unaffected by the rib width. Based on successful experience, it is permissible to use ribs of different widths. Nonformed ribs less than 8 in. (200 mm) wide may be impractical due to excavation considerations. Rib widths greater than 14 in. (360 mm) may be used if required for bearing. In that case, however, a width of 14 in. (360 mm) shall be used in section property calculations. Excavated rib widths most commonly found in practice are 10 to 12 in. (250 to 305 mm).

1059 **4.2.2.2 – Rib spacing**

Rib spacing S used in actual construction shall 1060 be a maximum of 15 ft (4.6 m). S used in moment and 1061 shear equations shall be the average rib spacing if the 1062 ratio between the largest and the smallest spacing 1063 does not exceed 1.5. If the ratio between the largest 1064 and the smallest spacing exceeds 1.5, S used in 1065 moment and shear equations shall be 0.85 times the 1066 largest spacing. S used in moment and shear equa-1067 tions shall neither be less than 6 ft (1.8 m) nor greater 1068 than 15 ft (4.6 m). The rib spacing used in the section 1069 properties shall be the actual rib spacing. 1070

1071 **4.2.2.3 – Rib continuity**

 $\begin{array}{ccc} 1072 & \text{Ribs used in design calculations shall be continuous} \\ 1073 & \text{between the edges of the foundation in both directions.} \end{array}$

- 1074
- 1075
- 1076
- 1077
- 1078
- 070
- 1079
- 1080
- 1081
- 1082
- 1083

1084
0185
10864.2.3 – Minimum prestress force for ribbed
foundations

The effective prestress force P_r shall not be less than 0.05A (kip). P_r shall be determined using the prestress at mid-slab or the location of the minimum prestress.

1090

1091 **4.2.4 – Soil-bearing pressure**

1092 Applied soil-bearing pressure shall be evaluated 1093 using generally accepted techniques and shall not 1094 exceed q_{allow} as specified by the LDP with geotechni-1095 cal experience.

1096

$\frac{1097}{1098}$ **4.3** – Uniform thickness foundations (UTFs)

Any ribbed foundation conforming to all requirements of this standard (except Sections 4.2.4 and 5.4) are permitted to be converted to an equivalent UTF, as specified herein. Converted UTFs must satisfy all requirements of Sections 5.0, 6.0, and 7.0.

COMMENTARY

C4.2.2.2 – Rib spacing

For ribbed foundations, the location of ribs is dictated mainly by the configuration of the foundation system, the structural design requirements, and the wall layout of the superstructure.

Additional ribs may be required where heavy loads are applied to the foundation, as in the case of a fireplace or an interior column.

C4.2.2.3 — Rib continuity

The design method is based on full continuity of ribs from edge to edge of the foundation in both directions. Ribs should extend across both full plan dimensions whenever possible. When architectural considerations (openings, corners, irregularities in plan shape, and so on) prevent rib continuity, the designer must provide equivalent rib continuity using rational engineering approaches.

To be considered as a continuous rib in the design rectangle, the rib should:

- (a) Overlap a parallel rib with adequate length; or
- (b) Be connected to a parallel rib by a perpendicular rib, which transfers by torsion the bending moment in the rib.

C4.2.3 — Minimum prestress force for ribbed foundations

If excessive shrinkage cracking is anticipated, the designer should consider increasing the minimum force to 0.1A(kip) and details to minimize restraint to shortening.

C4.2.4 — Soil-bearing pressure

Refer to PTI DC10.1-08² for one method of determining the applied soil-bearing pressure. Other generally accepted techniques may be used.

C4.3 — Uniform thickness foundations (UTFs)

When converting a ribbed foundation to a UTF, the ribbed foundation must satisfy all requirements applicable to ribbed foundations, with the exception of soil bearing (refer to Section 4.2.4) and cracked section provisions (refer to Section 5.4). The converted UTF must conform to the flexural stress criteria in Section 5.0 (including the

2003	RECOMMENDATIONS
2004	
2005	
2006	
2007	
2008	
2009	
2010	
2011	4.3.1 – UTF conversion
2012	Minimum thickness shall be
2013	
2014	Γ <u>.</u>
2015	$H = 3 \left \frac{I}{I} \right $
2016	$\mathbb{V}W$
2017	
2018	
2019	where H is in in.; I is in in. ⁴ ; and W is in ft.
2020	
2021	H shall be calculated for each direction (long and
2022	short) and the maximum value shall be used. H shall
2023	not be less than 7.5 in. (190 mm) unless a continuous
2024	rib. conforming to Section 4.2.2.1, is provided along
2025	the entire perimeter.
2026	
2027	4.3.2 — Minimum prestress force for UTFs
2028	The effective prestress force <i>P</i> shall not be less than
2029	0.05A (kip). P shall be determined using the prestress
2030	at mid-slab or the location of the minimum prestress.
2031	
2032	
2033	
2034	
2035	
2036	4.3.3 – Soil-bearing pressure
2037	Applied soil-bearing pressure shall be evaluated
2038	using generally accepted techniques and shall not
2039	exceed <i>q</i> as specified by the LDP with geotechni-
2040	cal experience.
2041	
2042	
2043	5.0 – FLEXURE
2044	
2045	Concrete flexural stresses shall be calculated as
2046	follows
2047	
2048	
2049	$f_{L,S} = 1000 P_r \pm 12,000 M_{L,S} \pm 1000 P_r e_p$
2050	$I = \frac{1}{A} \pm \frac{1}{S_{\tau P}} \pm \frac{1}{S_{\tau P}}$
2051	ם, ו ס, ו
2052	
2053	

2054

COMMENTARY

cracked section requirements in Section 5.4), shear criteria in Section 6.0, and minimum stiffness requirements in Section 7.0. (Note that β distances can be different in the conformant ribbed foundation and the converted UTF.)

C4.3.1 — UTF conversion

The conversion from ribbed foundation to UTF is based on equal moments of inertia. Units of the uniform thickness conversion equation are not immediately obvious. The equation is derived as follows:

The gross moment of inertia *I* for a rectangular UTF is

$$I = \frac{(12W)H^3}{12}$$

where *H* is in in.; *I* is in in.⁴; and *W* is in ft.

C4.3.2 — Minimum prestress force for UTFs

The required minimum force per unit of the cross-sectional area in the UTF is the same as that for the ribbed foundation (Section 4.2.3). This results in substantially larger total prestress force in the UTF than in the equivalent ribbed foundation because the cross-sectional area of the UTF is always larger than that of the ribbed foundation.

C4.3.3 — Soil-bearing pressure

Refer to PTI DC10.1-08² for one method of determining the applied soil-bearing pressure. Other generally accepted techniques may be used.

C5.0 — FLEXURE

The sign convention used in this standard considers concrete tension stresses to be negative and compression stresses positive. Therefore, the absolute values should be used when comparing to allowable stresses.

The maximum moment will vary depending on the swelling mode and the direction being designed. Wray⁴ provides background and derivations of the equations specified in Section 5.0.

COMMENTARY

C5.1 — Edge drop

C5.1.1 — Long direction

Licensed design professionals should ensure that calculations of edge drop moments based on values of e_m greater than 5 ft (1.5 m) should not be less than those generated at the 5 ft (1.5 m) threshold. There is a discontinuity in the equations in the long direction edge drop moments at $e_m = 5$ ft (1.5 m) (Eq. (7.1.1)) The moment for e_m slightly greater than 5 ft (1.5 m) is often less than the moment with e_m exactly equal to 5 ft (1.5 m).

2101 2102	RECOMMENDATIONS	COMMENTARY
2102	5.1.2 — Short direction	
2104		
2105	$M2 = \left(\frac{58 + e_m}{22}\right)M1$	
2106	(60)	
2107		
2100	512 Decign Momente	
2107	5.1.3 - Design moments	
2111	For $E_L < 75$ ft.	
2112	For $L_1/L_2 > 1.15$; $M_2 = M1$ and $M_2 = M2$	
2113		
2114	For $L_1/L_s < = 1.15$ and $L_1/L_s > 1.1$:	
2115		
2116	For $L_L/L_S < = 1.1$: $M_L = M1$ and $MS = M1$	
2117		
2110	For $L_L > 75$ ft:	
2119	$\Lambda A = (\Lambda A 1 + \Lambda A 2) / 2$	
2120	$M_{L} = (M1 + M2)/2$ $M_{L} = (M1 + M2)/2$	
2122	$M_{\rm S} = (M + M L) T L$	
2123		
2124	5.2 – Edge lift	
2125		
2126	5.2.1 — Long direction	
2127	0.1(h - 1)0.78(1 - 1)0.66	
2120	$M1 = \frac{S(ne_m)(y_m)}{7}$	
212)	7.2L ^{0.000} P ^{0.04}	
2131		
2132	5.2.2 — Short direction	
2133	E (0) J	
2134	$M2 = h^{0.35} \left \frac{19 + e_m}{M1} \right M1$	
2135	[57.75]	
2136		
2137	E.O.2. Design Memorie	
2130	5.2.3 – Design moments For $L < 75$ ft:	
2140	For $E_L < 75$ ft.	
2141	For $L_1/L_2 > 1.15$; $M_2 = M1$ and $M_2 = M2$	
2142		
2143	For $L_1/L_s < = 1.15$ and $L_1/L_s > 1.1$:	
2144		
2145	$M_L = M1$	
2146 2147	$M_{\rm s} = (M1 + M2) / 2$	
2147 2148	$E_{0,r}$ // c_{-1} 1 · M M and M M	
2170	For $L_L/L_S < = 1.1$: $NI_L = NII$ and $NI_S = NII$	

2149	RECOMMENDATIONS	COMMENTARY
2150		
2151	For $L_L > 75$ ft:	
2152		
2153	ML = (M1 + M2) / 2	
2154		
2155	MS = (M1 + M2) / 2	
2156		
2157	50 Allowship of an	
2158	5.3 – Allowable stress	C5.5 — Allowable stress
2159	with Section 5.0 shall not exceed the following	The sign convention used in these equations considers
2160	with Section 3.0 shall not exceed the following	stresses positive. Therefore, the absolute values should be
2160	Tension: $f = 6 \sqrt{f'}$	used when comparing them to allowable stresses
2161	$V_t = 0 \sqrt{r_c}$	used when comparing them to anowable stresses.
2102	Compression: $f = 0.45f'$	
2105		
2104		
2165	5.4 – Cracked sections	C5.4 — Cracked sections
2166	Sufficient reinforcement prestressed or nonpre-	Because of the post-cracking increase in soil support
216/	stressed in any combination shall be provided to	adjacent to the crack, equivalency does not require rein-
2168	develop $0.5M_L$ and $0.5M_S$ for both swell modes,	forcement for the full values of M_{L} and M_{S} . After consid-
2169	using conventional cracked-section flexural strength	erable study, it was decided that reasonable equivalency
2170	methods.	is provided throughout a wide range of soil and founda-
2171		tion parameters by providing reinforcement for $0.5M_L$ and
2172		$0.5M_s$. Bondy ⁷ addresses types of cracking and their rami-
2173		fications in post-tensioned residential foundations.
2174		
2175	5.4.1 — Tensile force in prestressed reinforcement	
2176	shall be taken as P_e and tensile force in honpre-	
2177	stressed reinforcement shall be taken as $A_s l_y/2$.	
2178	542 - Nonprostrossed reinforcement if required	
2179	shall be placed perpendicular to the perimeter of the	
2180	foundation starting with minimum concrete cover	
2181	from the foundation edge and extending inward with	
2182	a minimum length of 28.	
2183	a	
2184		
2185	6.0 — SHEAR	C6.0 — SHEAR
2186		
2187	Applied concrete shear stress v produced by V_1 or V_s	The area resisting applied shear is based on the web area of
2107	shall be calculated as follows:	the ribs alone, consistent with generally accepted structural
2100		engineering practice. Wray4 provides background and deri-
2109		vations of the equations specified in Section 6.0.
2107	6.1 — Applied concrete shear stress	
217U		
2171	6.1.1 – Ribbed foundations	
2192	1000(V or V)	
2193	$V = \frac{1000(v_L \text{ or } v_S)}{1000(v_L \text{ or } v_S)}$	

nbh

2194

2195 2196	RECOMMENDATIONS	COMMENTARY
2190 2197 2198	6.1.2 — UTFs	
2198 2199 2200 2201 2202	$v = \frac{1000(V_L \text{ or } V_S)}{A}$	
2203 2204 2205 2206	Maximum shear force <i>V</i> shall be as specified in Sections 6.2 and 6.3.	
2207 2208	6.2 – Edge drop	
2209 2210 2211	6.2.1 – Long direction	
2212 2213 2214 2215	$V_{L} = \frac{1}{1940} \left(L^{0.09} S^{0.71} h^{0.43} P^{0.44} y_{m}^{0.16} e_{m}^{0.03} \right)$	
2216 2217 2218	For $y_m \le 1$ in. (25 mm), e_m should not exceed 5 ft (1.5 m) for shear only.	
2219 2220 2221 2222	6.2.2 — Short direction For $L_L/L_s \ge 1.1$	
2223 2224 2225 2226	$V_{L} = \frac{1}{1350} \left(L^{0.19} S^{0.45} h^{0.20} P^{0.54} y_{m}^{0.04} e_{m}^{0.97} \right)$	
2227 2228	For $L_L/L_S < 1.1$, $V_S = V_L$	
2229223022312232	For $y_m \le 1$ in. (25 mm), em should not exceed 5 ft (1.5 m) for shear only.	
2233 2234	6.3 – Edge lift	
2235 2236 2237	6.3.1 — Long and short direction	
2237 2238 2239	$V_{L} = V_{S} = \frac{L^{0.07} h^{0.4} P^{0.03} e_{m}^{0.16} Y_{m}^{0.67}}{3S^{0.015}}$	

2240	RECOMMENDATIONS	
2241		
2242	6.4 – Allowable stress	C6.4 –
2243	Applied shear stress v calculated in accordance with	If v exce
2244	Section 6.0 shall not exceed the following	with the
2245		
2246	$r = 24 F = 22 (4000 P_r)$	
2247	$V_c = 2.4\sqrt{T_c} + 0.2(1000\frac{-1}{A})$	
2248		
2249		
2250	The effective prestress force P_{c} shall be determined	Possible
2251	using the prestress at β .	(a) Ir
2252		(b) I1
2253		(c) In
2254		
2255		
2256	7.0 - STIFFNESS	
2257	Foundation stiffness F. Lin both short and long direct	D:fferrer
2258	Foundation stimless E_{cr} in both short and long direc-	minimu
2259	to the following	equation
2260		and edg
2261	For Edge Drop:	
2262	5	This equ
2263		and the
2264	$E_{cr}I_{L \text{ or } S} = 5,760,000 * M_{L \text{ or } S}L_{S \text{ or } L}C_{S}Z_{L \text{ or } S}$	paraboli
2265		deflectio
2266		to perm
2267	For Edge Lift:	reasona
2268		presente
2269	E I = -11520000 * M I C Z	each dir
2270	$L_{cr} L_{cr} S = 11,520,000$ $M_{L} or S S or L^{O}S^{2}L or S$	$C_{\rm c}$ is a f
2271		the swel
2272		
2273		Bondy ⁹
2274		effects a
2275		
2276		Signific
2277		ceiling s
2278		structur
2279		walle be
2280		relative
2281		extreme
2282		conditio
2283		in very
2284		roof trus
2285		rial. C_s v
2286		trusses

COMMENTARY

C6.4 — Allowable stress

If v exceeds v_c , provide shear reinforcement in accordance with the following

$$\frac{A_v}{S} = \frac{(v - v_c)b}{0.4f_y}$$

Possible alternatives to shear reinforcement include:

- (a) Increasing the rib depth;
- (b) Increasing the rib width; and
- (c) Increasing the number of ribs (decrease the rib spacing).

C7.0 — STIFFNESS

Differential foundation deflection is controlled by providing minimum foundation stiffness in accordance with the equation presented, which is applicable to both edge lift and edge drop swell modes.

This equation was derived by relating permissible deflection and the slab length over which it occurs^{2,8} to an assumed parabolic shape. This method for controlling differential deflections, which directly relates foundation stiffness to permissible curvatures and deflections, is simpler and reasonably equivalent to differential deflection criteria presented in previous editions of this standard. The minimum stiffness $E_{cr}I$ required should be determined for each direction considering both swell modes. The coefficient C_s is a function of the type of superstructure material and the swelling condition (edge drop or edge lift).

Bondy⁹ discusses the relationship between construction effects and actual deflections in greater detail.

Significant problems (severe drywall cracking, large wall/ ceiling separations) are evident in residential wood-framed structures with prefabricated long-span roof trusses, when the trusses are rigidly attached to nonbearing partition walls between the truss supports. In that case, even a small relative vertical movement between the two ends of the extremely rigid trusses can cause distress. To mitigate this condition, Table C7.1 requires very high C_s values (resulting in very large required stiffness values) when prefabricated roof trusses are used, regardless of the superstructure material. C_s values specified in Table C7.1 for prefabricated roof trusses may be waived, and smaller values based on the

2288 2289 2289appropriate superstructure material may be used if joincry details are specified that permit relative vertical move mem between prefibricated roof trusses and intersecting bracing partition walls while providing required latera bracing. Smaller values of C_i may be used for other super structure materials listed in Table C1.1 if effective jointing bracing control joints in brick or stuce owalls.2297 2298 2297 2299 2301 2302 2302 2302 2303 2304Table R7.1—Recommended values of stiffness coefficient C, Wood and fiber concert dding 0.05 3uccop, plaster, and adhered manony 0.75 Aachered masony units 2.082306 2307 2308 2308 2308 23098.0 - GENERALC8.0 - GENERAL3309 2309 23008.0 - GENERALC8.1 - Soils3318 341 341 3431 3434 342 342.2 or satisfy each of Sections 81.2.4 4 dearmined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle 2331 2332 2334 2334 2334 2335C8.1.2 - Expansive soils 2336 2337 2337 2338 2338 2339 2339 2339 2339 2330 23310C8.1.2 - Expansive soils 2.08 C8.1.2 - Expansive soils 2.08 C8.1.2 - Expansive soils is consistent with soil class site and experience.3333 3339 3330 3330 3331 3331 3331 3331 3332 3331 3332 3331 3333 3332 3333 33332Call - Soils3334 3332 3332 3333 3333 3333 3333 3333 33333Call - Soils3334 3333 3333 3333 3333 3333 33333Call - Soils3334 33333 33333 33333 333	2287	RECOMMENDATIONS	COMMENTARY	
2289 2290 2291appropriate superstructure material may be used in joinery details are specified that permit relative vertical move ment between prefabricated rook wills white providing required later braining. Smaller values of C, may be used for other super structure materials listed in Table C7.1 if effective jointing details are used to minimize cracking, such as closely spaced control joints in brick or stueco walls.2295 2296 2297 2300 2300 2301 2302 2302 2303 2304Table R7.1—Recommended values of stiffness coefficient C, word and fiber cement siding 0.50 Stuece, plaste, and afferd manony 0.73 Values areas fail leagt or width of foundations built on expansive soils, as defined in Section 8.1.2.4C8.0—GENERAL3318 3414 3415 3416 3416 3416 3416 3417Rit — Field investigation and laboratory testing professional (LDP) based on local practice and experience.C8.1—Soils3329 3412 3414 3416 3414C1.1—Field investigation and laboratory testing program shall be determined by a licensed design professional (LDP) based on local practice and experience.C8.1.2—Expansive soils 3.1.2.4 to be considered spansive.3320 3414 3415 3415 3416 3416 3416 3416 3416States, plaste, and afterd manory 0.32 3.02 3.01 must satisfy each of Sections 8.1.2.1 through spansive.C8.1.2—Expansive soils 3.01 must satisfy each of Sections 8.1.2.1 through spansive.3422 3416 3416 3416 3416 3416 3416States, plaste, and after dust provide and experience.C8.1.2—Expansive soils 3.01 must satisfy each of Sections 8.1.2.1 through spansive.C8.1.2—Expansive soils 3.01 must satisfy each of Sections 8.1.2.1 throu	2288		· · · · · · · · · · · · · · · · · · ·	1:0:
2390 2391 2392 2392 2393and the period functional model of the spectral and the member the spectral and the providing required latera bracing. Smaller values of C_i may be used for other super spaced control joints in brick or structo walls.2393 2394 2395 2396 2391 2302 2301 2301 2302 2301 2302 2302 2302 2301 2302 2301 2302 2301 2302 2302 2302 2303 2304 2305 2306 2306 2301 2304 2304 2304 2304 2304 2305 2306 2306 2306 2307 2308 330 330 330 330 330 330 330 330 3304 3304 2304 2304 2304 2305 3306 3306 3307 3308 341 4 hernal forces and stiffness requirements specified in this standard are based on criteria in this section. 3317 341 3	2289		appropriate superstructure material may be	used if joinery
2291Inclusion of the set of the second	2290		ment between prefebricated reaf trugges a	vertical move-
2292 2293Induct in grant data walks of C, may be used for other super structure materials listed in Table C7.1 if effective jointing details are used to minimize eracking, such as closely spaced control joints in brick or stueco walls.2294 2295Table R7.1—Recommended values of stiffness coefficient C,2298 2299Table R7.1—Recommended values of stiffness coefficient C,2299 2300Building materialC,2301 2302Wood and there ensers siding 0.500.502303 2304R7.1—Recommended values of stiffness coefficient C,2304 2305Wood and there ensers siding 0.502.082305Standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2.4This standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2.1 through and experience.C8.1 — Soils2317 3318 3314 3318 3318 3316C8.1 — SoilsC8.1 — Expansive soils as defined in Section 8.1.2.1 through a determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle and 1 for the bottom layer, or using the Pf of a 2.1 ft (0.60 m) or thicker layer within the upper 5 ft a 2.1 ft (0.60 m) or thicker layer within the upper 5 ft a 2.1 ft (0.60 m) or thicker layer within the upper 5 ftC8.1 — Soils	2291		nonbearing partition wells while providing	required lateral
2293During to fixed in Table C7.1 if effective jointing details are used to minimize eracking, such as closely spaced control joints in brick of 2.1 if effective jointing details are used to minimize eracking, such as closely spaced control joints in brick of 2.1 if effective jointing details are used to minimize eracking, such as closely spaced control joints in brick of 2.1 if effective jointing details are used to minimize eracking, such as closely spaced control joints in brick of 2.1 if effective jointing details are used to minimize eracking, such as closely spaced control joints in brick of 2.1 if effective jointing details are used to minimize eracking, such as closely spaced control joints in brick of 2.1 if effective jointing details are used to minimize eracking, such as closely spaced control joints in brick of 2.1 if effective jointing details are used to minimize eracking, such as closely spaced control joints in brick of 2.1 if effective jointing details are used to minimize eracking, such as closely spaced control joints in brick of 2.1 if effective jointing details are used to minimize eracking, such as closely spaced control joints in brick of 2.0 Wood and fiber ceneral siding details are used to minimize eracking, such as closely spaced control joints in brick of 2.00 Concrete masony units expansive soils, as defined in Section 8.1.2.4 to be considered and experience.Table AF1.1—Recommended values of stiffness concellation from edge to edge.2312 2313 2314 2316 2316 2317 2318 2318 2318 2318 2319 23198.1 - SoilsC8.1 - SoilsC8.1 - Expansive soils is consistent with soil class is consistent with soil class is consistent with soil class design professional (LOP) based on local practice apansive.C8.1 - Expansive soils Consistent with soil	2292		bracing Smaller values of C may be used	for other super-
2294Call of the constraint of the constr	2293		structure materials listed in Table C71 if et	fective jointing
2295 spaced control joints in brick or stucco walls. 2297 Table R7.1—Recommended values of stiffness coefficient C, 2299 Wood and fiber control is in brick or stucco walls. 2300 Succe, plaster, and adhered masonry (store and brick) 2301 Succe, plaster, and adhered masonry (store and brick) 2302 Anchored masonry (store and brick) 2303 Coerete masonry units 2304 Coerete masonry units 2305 (without steps to minimize truss lift) 2306 Coerete masonry units 2307 These standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2. 2318 8.1 – Soils 2319 The indinum field investigation and laboratory testing 2326 Soils must satify each of Sections 8.1.2.1 through stifts for statify each of Sections 8.1.2.1 through stifts for statify each of Sections 8.1.2.1 through stifts for statify each of Sections 8.1.2.1 through statify for soils is consistent with soil class foreation eriteria presented in the International Building Code (IBC). 2326 6.1.2 - Expansive soils 2327 8.1.2 - Expansive soils 2328 6.1.2.1 - P plasticity index (P) is 15 or greatry, each is in the bottom layer, or using three 5 ft (1.5 m) layers 2329 8.1.2 - P	2294		details are used to minimize cracking s	such as closely
2296 Table R7.1—Recommended values of stiffness coefficient C, 2300 States, plaste, and adhered masony (states and hered) (states and states and st	2295		spaced control joints in brick or stucco wall	ls
2297 Table R7.1—Recommended values of stiffness coefficient C, 2299 Building material C, 2300 Sueco, plaster, and albered masomy 0.75 2301 Sueco, plaster, and albered masomy 0.75 2303 Anchored masomy 0.75 2304 Concrete masony units 2.00 2305 Sueco, plaster, and albered masomy 0.75 2306 Sueco, plaster, and albered masomy 0.75 2307 Anchored masomy units 2.00 2308 S.0 - GENERAL Trasses that span across full length or withto of foundation from edge to edge. 2309 Internal forces and stiffness requirements specified in this standard are based on criteria in this section. Trasses that span across full length or withto of foundation from edge to edge. 2310 Internal forces and stiffness requirements specified in this standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2. Trasses that span across full length or with soil foundation from edge to edge. 2311 8.1 - Soils This standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2. C8.1 - Soils 2323 8.1 - Soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive soi	2296			
2298 From the term is or stands of stand	2297		Table B7 1—Recommended values of	stiffnass
2299 States, plast, and altered masonry 0.75 300 States, plast, and altered masonry 0.75 301 States, plast, and altered masonry 0.75 302 Anchored masonry store and brick) 1.00 303 Concrete masonry units 2.08 304 Wood and fiber cement siding 0.50 305 States, plast, and altered masonry 0.75 306 Concrete masonry units 2.00 307 Robit States, plast, and altered masonry 0.28 308 8.0 – GENERAL Concrete masonry units 2.08 309 Internal forces and stiffness requirements specified in this section. "masse that span across full length or width of foundation from edge to edge. 310 Internal forces and stiffness requirements specified in this section. "masse that span across full length or width of foundation from edge to edge. 311 In this standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2. C8.1 — Soils 312 8.1 – Soils C8.1 — Expansive soils This definition of expansive soils is consistent with soil class sification criteria presented in the International Building Code (IBC). 322 8.1.2 - Expansive soils This definitio	2298		coefficient C	stimess
Building material C. Wood and fiber commussiong 0.50 Succo, plaster, and adhered massonry 0.75 Anchored massonry (store and brick) 1.00 Concrete masonry units 2.00 Prefabricated roof trusses 2.08 (without steps to minimize truss full) 2.08 Internal forces and stiffness requirements specified 1 in this standard are based on criteria in this section. 1 Internal forces and stiffness requirements specified 1 This standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2. C8.1 — GENERAL Rating program shall be determined by a licensed C8.1 — Soils Soils must satisfy each of Sections 8.1.2.1 through expansive. C8.1.2 — Expansive soils Soils must satisfy section 8.1.2.4 to be considered expansive. C8.1.2 — Expansive soils Soils must satisfy section 8.1.2.4 to be considered expansive, and 1 for the bottom layer; or using the Pl of expansive, and 1 for the bottom layer; or using the Pl of a setting procedure using three 5 ft (1.5 m) layers C8.1.2 — Expansive soils is consistent with soil class ification criteria presented in the International Building Code (IBC). State of the bottom layer; or using the Pl of a 2 ft (0.60 m) or thicker layer within the upper 5 ft A chore of masses is a consistent with requery within the upper 5 ft	2299			~
Wood and fibre commut siding 0.50 Wood and fibre commut siding 0.50 Stace., plaster, and adhered masomy (store and brick) 1.00 Concrete masomy units 2.00 Prefabricated noof trusses 2.00 Prefabricated noof trusses 2.08 Internal forces and stiffness requirements specified "Trusses that span across full length or width of foundation from edge to edge. Internal forces and stiffness requirements specified Internal forces and stiffness requirements specified Internal forces and stiffness requirements specified Trusses that span across full length or width of foundation from edge to edge. Internal forces and stiffness requirements specified Trusses that span across full length or width of foundation from edge to edge. Internal forces and stiffness requirements specified Trusses that span across full length or width of foundation from edge to edge. Internal forces and stiffness requirements specified This standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2. Batter and experience. 8.1.2 - Expansive soils C8.1 - Soils Soils must satisfy each of Sections 8.1.2.1 through expansive. Soils must satisfy each of Sections 8.1.2.1 through expansive. This definition of expansive soils is consistent with soil class sifetion criteria presented in the International Building Code (IBC).	2300		Building material	C_s
302 Suece, plastic, and addred masonry 0.75 303 Anchored masonry (sine and brick) 1.00 2304 Concrete masonry units 2.00 305 Prefabricated roof trusses 2.08 306 Solo – GENERAL C8.0 – GENERAL 307 Internal forces and stiffness requirements specified in this standard are based on criteria in this section. "Trusses that span across full length or width of foundation from edge to edge. 311 Solo – GENERAL C8.0 – GENERAL 312 8.1 – Soils This standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2. C8.1 – Soils 313 8.1.1 – Field investigation and laboratory testing program shall be determined by a licensed ogen professional (LDP) based on local practice and experience. C8.1.2 – Expansive soils 312 Soils must satisfy each of Sections 8.1.2.1 through expansive. This definition of expansive soils is consistent with soil clas sification criteria presented in the International Building expansive. 323 8.1.2.1 – Plasticity index (PJ) is 15 or greater, and the weight of 3 for the bol layer, 2 for the middle sign apresented in the laternational Building expansive. 323 weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the bol layer, 2 for the middle sign apresented in the lothexplayer within the upper 5 ft <td>2300</td> <td></td> <td>Wood and fiber cement siding</td> <td>0.50</td>	2300		Wood and fiber cement siding	0.50
Achebred masonry (stone and brick) 1.00 2004 Concrete masonry units 2.00 2005 Prefabricated cort russes 2.08 2006 Sole - GENERAL C8.0 - GENERAL 2007 Internal forces and stiffness requirements specified in this standard are based on criteria in this section. 'Trasses that span across full length or width of foundation from edge to edge. 2010 Internal forces and stiffness requirements specified in this standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2. C8.1 - Soils 2017 8.1 - Soils C8.1 - Soils 2018 8.1 - Field investigation and laboratory testing C8.1 - Soils 2020 design professional (LDP) based on local practice and experience. 2021 8.1.2 - Expansive soils Soils must satisfy each of Sections 8.1.2.1 through \$1.2.3 or satisfy section 8.1.2.4 to be considered expansive. C8.1.2 - Expansive soils 2022 8.1.2.1 - Plasticity index (PI) is 15 or greater, different in a accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers This definition of expansive soils 2031 a 2 ft (0.60 m) or thicker layer within the upper 5 ft a 2 ft (0.60 m) or thicker layer within the upper 5 ft	2301		Stucco, plaster, and adhered masonry	0.75
2304 Concrete masony units 2.00 2305 Prefabricated roof trusses 2.08 2306 Sole - GENERAL Trusses that spin across full length or width of foundation from edge to edge. 2307 Internal forces and stiffness requirements specified in this standard are based on criteria in this section. Trusses that spin across full length or width of foundation from edge to edge. 2311 8.1 - Soils C8.0 - GENERAL C8.0 - GENERAL 2312 8.1 - Soils This standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2. C8.1 - Soils 2318 The minimum field investigation and laboratory testing program shall be determined by a licensed design professional (LDP) based on local practice and experience. C8.1.2 - Expansive soils 2322 Sole must satisfy each of Sections 8.1.2.1 through sole, sole and experience. This definition of expansive soils is consistent with soil clas siftication criteria presented in the International Building expansive. 2323 8.1.2.1 - Plasticity index (PI) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers C8.1.2 - Expansive soils 2334 Hayer, and 1 for the bot malayer, or using the PI of a 2 ft (0.60 m) or thicker layer within the upper 5 ft C8.1 - Soil a 2 ft (0.60 m) or thicker layer within the upper 5 ft	2202		Anchored masonry (stone and brick)	1.00
2304 Predafricated roof trusses (M) 2.08 2305 Supervised of trusses (M) 2.08 2306 8.0 - GENERAL Trusses that span across full length or width of foundation from edge to edge. 2307 Internal forces and stiffness requirements specified in this standard are based on criteria in this section. C8.0 - GENERAL 2310 Internal forces and stiffness requirements specified in this standard are based on criteria in this section. C8.1 - Soils 2311 B.1 - Soils C8.1 - Soils C8.1 - Soils 2312 B.1 - Field investigation and laboratory testing program shall be determined by a licensed design professional (LDP) based on local practice and experience. C8.1.2 - Expansive soils C8.1.2 - Expansive soils 2323 Soils must satisfy each of Sections 8.1.2.1 through expansive. This definition of expansive soils is consistent with soil class if determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer, or using the PI of a 2 ft (0.60 m) or thicker layer within the upper 5 ft C8.1 - Soils	2303		Concrete masonry units	2.00
2309 ************************************	2304		Prefabricated roof trusses	2.08
 8.0 – GENERAL 1.1 – Soils 8.1 – Soils 8.1 – Soils 8.1 – Soils 8.1 – Field investigation and laboratory testing program shall be determined by a licensed design professional (LDP) based on local practice and experience. 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 – Plasticity index (<i>Pl</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>Pl</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2305		*Trusses that span across full length or width of foundation	from edge to edge.
 8.0 – GENERAL 8.0 – GENERAL 8.1 – Soils 8.1 – Soils 8.1 – Soils 8.1.1 – Field investigation and laboratory testing 8.1.1 – Field investigation and laboratory testing 8.1.2 – Expansive soils 8.1.2 – Expansive soils 8.1.2 – Expansive soils 8.1.2.1 – Plasticity index (PI) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers 8.1.2.1 – Plasticity index (PI) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers 8.1.2.1 – Plasticity index (PI) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers 8.1.2.1 – Plasticity index (PI) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers 8.1.2.1 – Plasticity index (PI) is 15 or greater, determined in accordance with ASTM D4318 and a weight of 3 for the top layer, 2 for the middle 8.1.2.1 – Plasticity index (PI) is 15 or greater, determined in accordance with ASTM D4318 and a weight of 3 for the top layer, 2 for the middle 8.1.2.1 – Plasticity index (PI) is 15 or greater, determined in accordance with ASTM D4318 and a weight of 3 for the top layer, 2 for the middle 8.1.2.1 – Plasticity index (PI) is 15 or greater, determined in accordance with ASTM D4318 and a weight of 3 for the top layer, 2 for the middle 8.1.2.1 – Plasticity index (PI) is 15 or greater, determined in accordance with ASTM D4318 and a weight of 3 for the top layer, 2 for the middle 8.1.2.1 – Plasticity index (PI) is 15 or greater, determined in accordance with ASTM D4318 and a weight of 3 for the top layer, 2 for the middle 8.1.2.1 – Plasticity index (PI) is 15 or greater, determined in accordance with ASTM D4318 and a weight of 3 for the top layer, 2 for the middle <li< td=""><td>2306</td><td></td><td>1 0</td><td>6 6</td></li<>	2306		1 0	6 6
 309 a.1 - Soils 8.1 - Soils 8.1 - Soils 7.1 - Field investigation and laboratory testing 8.1 Field investigation and laboratory 8.1 Field investigation 8.1 Expansive soils 8.1 Expansive soils 8.1 Expansive soils 8.1 Expansive soils 8.1 Plasticity index (<i>PI</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer, or using the <i>PI</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2307			
 Internal forces and stiffness requirements specified in this standard are based on criteria in this section. 8.1 – Soils 8.1 – Soils 8.1 – Soils 8.1 – Field investigation and laboratory testing 8.1.1 – Field investigation and laboratory testing 8.1.2 – Expansive soils 8.1.2 – Expansive soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 – Plasticity index (<i>Pl</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>Pl</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2308	0.0 - GENERAL	Co.U — GENERAL	
 and in this standard are based on criteria in this spection. in this standard are based on criteria in this spection. 8.1 - Soils 8.1 - Soils 8.1 - Soils 8.1 - Field investigation and laboratory testing 8.1.1 - Field investigation and laboratory testing The minimum field investigation and laboratory testing testing program shall be determined by a licensed design professional (LDP) based on local practice and experience. 8.1.2 - Expansive soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 - Plasticity index (<i>Pl</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>Pl</i> of a 2 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2309	Internal forces and stiffness requirements specified		
 8.1 - Soils 8.1 - Soils 7.1 This standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2. 8.1.1 - Field investigation and laboratory testing 7.1 The minimum field investigation and laboratory testing program shall be determined by a licensed design professional (LDP) based on local practice and experience. 8.1.2 - Expansive soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 - Plasticity index (<i>Pl</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>Pl</i> of as 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2310	in this standard are based on criteria in this section		
 8.1 - Soils 8.1 - Soils This standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2. 8.1.1 - Field investigation and laboratory testing 8.1.2 - Field investigation and laboratory testing and experience. 8.1.2 - Expansive soils Soils must satisfy each of Sections 8.1.2.1 through st.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 - Plasticity index (<i>PI</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>PI</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 8.1.2 - Expansive for the top layer of the top layer of the middle layer, and 1 for the bottom layer; or using the <i>PI</i> of as 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2311			
 8.1 – Soils This standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2. 8.1.1 – Field investigation and laboratory testing The minimum field investigation and laboratory testing testing program shall be determined by a licensed design professional (LDP) based on local practice and experience. 8.1.2 – Expansive soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 – Plasticity index (<i>PI</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>PI</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2312			
 This standard is applicable to foundations built on expansive soils, as defined in Section 8.1.2. 8.1.1 - Field investigation and laboratory testing The minimum field investigation and laboratory testing The minimum field investigation and laboratory testing testing program shall be determined by a licensed design professional (LDP) based on local practice and experience. 8.1.2 - Expansive soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 - Plasticity index (<i>Pl</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>Pl</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2313	8.1 – Soils	C8.1 — Soils	
 expansive soils, as defined in Section 8.1.2. 8.1.1 - Field investigation and laboratory testing The minimum field investigation and laboratory testing program shall be determined by a licensed design professional (LDP) based on local practice and experience. 8.1.2 - Expansive soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 - Plasticity index (<i>Pl</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>Pl</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2314	This standard is applicable to foundations built on		
 8.1.1 – Field investigation and laboratory testing The minimum field investigation and laboratory testing program shall be determined by a licensed design professional (LDP) based on local practice and experience. 8.1.2 – Expansive soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 – Plasticity index (<i>PI</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>PI</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2315	expansive soils, as defined in Section 8.1.2.		
 8.1.1 – Field investigation and laboratory testing The minimum field investigation and laboratory testing program shall be determined by a licensed design professional (LDP) based on local practice and experience. 8.1.2 – Expansive soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 – Plasticity index (<i>Pl</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>Pl</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2316			
 The minimum field investigation and laboratory testing program shall be determined by a licensed design professional (LDP) based on local practice and experience. 8.1.2 - Expansive soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 - Plasticity index (<i>Pl</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>Pl</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2317	8.1.1 — Field investigation and laboratory testing		
 2319 testing program shall be determined by a licensed 2320 design professional (LDP) based on local practice 2321 and experience. 2322 8.1.2 - Expansive soils 2324 Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 2326 expansive. 2327 8.1.2.1 - Plasticity index (<i>Pl</i>) is 15 or greater, 2328 determined in accordance with ASTM D4318 and a 2329 weighting procedure using three 5 ft (1.5 m) layers 2330 with a weight of 3 for the top layer, 2 for the middle 2331 layer, and 1 for the bottom layer; or using the <i>Pl</i> of 2326 a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2318	The minimum field investigation and laboratory		
 design professional (LDP) based on local practice and experience. 81.2 - Expansive soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 81.2.1 - Plasticity index (<i>Pl</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle alayer, and 1 for the bottom layer; or using the <i>Pl</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2319	testing program shall be determined by a licensed		
 and experience. and experience. 8.1.2 – Expansive soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 – Plasticity index (<i>PI</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>PI</i> of 2332 a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2320	design professional (LDP) based on local practice		
 8.1.2 - Expansive soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 - Plasticity index (<i>PI</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>PI</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 8.1.2 Expansive soils C8.1.2 - Expansive soils C8.1.2 - Expansive soils Code (IBC). 	2321	and experience.		
 8.1.2 - Expansive soils Soils must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 - Plasticity index (<i>PI</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>PI</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2322			
 Solls must satisfy each of Sections 8.1.2.1 through 8.1.2.3 or satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 - Plasticity index (<i>PI</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>PI</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2323	8.1.2 – Expansive soils	C8.1.2 — Expansive soils	
 8.1.2.3 of satisfy Section 8.1.2.4 to be considered expansive. 8.1.2.1 - Plasticity index (<i>Pl</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>Pl</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2324	Solis must satisfy each of Sections 8.1.2.1 through	I his definition of expansive soils is consister	t with soil clas-
 8.1.2.1 – Plasticity index (<i>PI</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>PI</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2325	8.1.2.3 or salisty Section 8.1.2.4 to be considered	sincation criteria presented in the interna	tional Building
8.1.2.1 — Plasticity index (<i>PI</i>) is 15 or greater, determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>PI</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft	2326	expansive.	Code (IBC).	
 determined in accordance with ASTM D4318 and a weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>PI</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2327	8121 - Plasticity index (PI) is 15 or greater		
 weighting procedure using three 5 ft (1.5 m) layers with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>PI</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2328	determined in accordance with ASTM D4318 and a		
 with a weight of 3 for the top layer, 2 for the middle layer, and 1 for the bottom layer; or using the <i>PI</i> of a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2329	weighting procedure using three 5 ft (1.5 m) lavers		
 2331 layer, and 1 for the bottom layer; or using the <i>PI</i> of 2332 a 2 ft (0.60 m) or thicker layer within the upper 5 ft 	2330	with a weight of 3 for the top laver. 2 for the middle		
a 2 ft (0.60 m) or thicker layer within the upper 5 ft	2331	layer, and 1 for the bottom layer; or using the PI of		
	2332	a 2 ft (0.60 m) or thicker layer within the upper 5 ft		
2333 (1.5 m) with a PI of 15 or greater.	2333	(1.5 m) with a <i>PI</i> of 15 or greater.		

2334	RECOMMENDATIONS	COMMENTARY
2335		
2336	8.1.2.2 - More than 10% of the soil particles	
2337	pass a No. 200 sieve (75 µm), determined in accor-	
2338	dance with ASTM D422 and a weighting procedure	
2339	using three 5 ft (1.5 m) layers determined using the	
2340	depth weighting procedures of Section 8.1.2.1, disre-	
2341	garding the 2 ft (0.60 m) or thicker layer provisions.	
2342		
2343	8.1.2.3 — More than 10% of the soil particles are	
2344	less than 5 µm in size, determined in accordance	
2345	with ASTM D422 and a weighting procedure using	
2346	three 5 ft (1.5 m) layers determined using the depth	
2347	weighting procedures of Section 8.1.2.1, disregarding	
2348	the 2 ft (0.60 m) or thicker layer provisions.	
2349		
2350	8.1.2.4 — Expansion index (EI) is greater than 20,	
2351	determined in accordance with ASTM D4829 and a	
2352	weighting procedure using three 5 ft (1.5 m) layers	
2353	determined using the depth weighting procedures	
2354	of Section 8.1.2.1, disregarding the 2 ft (0.60 m) or	
2355	thicker layer provisions.	
2356		
2357		
2358	9.0 – SOIL PARAMETERS	C9.0 — SOIL PARAMETERS
2359		
2360	e_m and y_m shall be determined by the procedures in	This standard should not be used in conjunction with any
2361	Sections 9.1 and 9.2 or Section 9.3.	previous manual editions or standards issued by PTT.
2362		
2363		If e_m and y_m were calculated using previous editions or
2364		standards, then the foundation must be designed using the
2305		structural procedures prescribed in corresponding previous
2300		editions of standards.
2368		The procedure described in Sections 01 and 02 for the deter
2369		minipation of soil support parameters for shallow foundations
2370		on expansive clay soil sites uses a rational means for evalu-
2371		ating the edge moisture variation distance e and the differ-
2372		ential soil movement v . This procedure provides the ability
2373		to model soil conditions by incorporating extensive databases
2374		and research from the USDA Natural Resources Conserva-
2375		tion Service National Soil Survey Center, ¹⁰ and by allowing
2376		for more flexibility in evaluating vertical moisture barriers,
2377		planter areas, and variable soil suction values controlling the
2378		suction conditions at the surface of the soil profile.
		-

2379 RECOMMENDATIONS	COMMENTARY
 2380 2381 9.1 – Edge moisture variation distance <i>e_m</i> 2382 2383 2384 2385 	C9.1 — Edge moisture variation distance e_m The edge moisture variation distance is the distance beneath the edge of a shallow foundation within which moisture will change due to wetting or drying influences around the perimeter of the foundation.
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403	The major factor in determining the edge moisture varia- tion distance is the unsaturated diffusion coefficient α . This, in turn, depends on suction, permeability, and cracks in the soil. With the same diffusion coefficient, the e_m value will be larger for the edge drop case in which moisture is with- drawn from soil around the perimeter of the foundation. The e_m value will be smaller for an edge lift case in which mois- ture is drawn beneath the perimeter of the building into drier soil. Roots, layers, fractures, or joints in a CH soil (refer to Table 9.1) will increase the diffusion coefficient and increase the e_m value for both edge lift and edge drop conditions. Calculating e_m involves the use of the Thornthwaite mois- ture index I_m approach and an in-place soil-based approach, which are compared using estimates based on the in-place unsaturated diffusion coefficient calculated from simple soil properties. If the area developed is changed from a natural condition to support man-made improvements and landscaping, these
2405 2406	anticipated changes should be incorporated into this analysis.
2407 2408 9.1.1 – Soil parameters For each distinct soil layer to a depth of z_m , determine the following soil parameters: 2409 2410 9.1.1.1 – <i>LL</i> is liquid limit determined in accor-	C9.1.1 — Soil parameters Depths greater than 9 ft (2.7 m) may be used if justified by geotechnical analysis.
 2412 dance with ASTM D4318, % 2413 2414 9.1.1.2 - <i>PL</i> is plastic limit determined in accor- 2415 dance with ASTM D4318, % 	
 2416 2417 2418 9.1.1.3 - <i>PI</i> is plasticity index determined in accordance with ASTM D4318, % 	
2419 9.1.1.4 — Percentage of soil passing No. 200 2420 sieve = $\%_{-200}$ 2421	
2422 9.1.1.5 – Percentage of soil finer than 2 μ m = 2423 % $_{-2\mu}$, expressed as a percentage of the total sample	

2424

2466 2467

C9.1.2.1.1 - If data does not fall within one of the six zones, use the nearest zone. No data should plot above the U-line. If data plots within the area below a PI of 7, bounded by the U-line and the A-line, use $\gamma_0 = 0.01$.

COMMENTARY

2519 RECOMMENDATIONS 2520 **9.1.2.1.3** – Correct γ_0 for the actual percentage 2521 of fine clays 2522 2523 $\gamma_h = \frac{\gamma_0 \% fc}{100}$ 2524 2525 2526 2527 2528 **9.1.2.1.4** — Correct γ_h for swelling or shrinkage: For swelling (edge lift): $\gamma_h _{swell} = \gamma_h e^{\gamma h}$ 2529 2530 For shrinkage (edge drop): $\gamma_{h \text{ swell}} = \gamma_{h} e^{-\gamma h}$ 2531 2532 2533 **9.1.2.1.5** – Correction of γ_h for coarse-grained 2534 soil. The correction of γ_h for coarse-grained soil shall 2535 only be used in cases where the percentage retained 2536 on the No. 10 sieve is 10% or more. 2537 2538 2539 $(\gamma_h)_{corr} = \gamma_h \left| \frac{100}{F\left(\frac{\gamma_{moist}}{\gamma_{i-r}}\right) + (100 - F)} \right|$ 2540 2541 2542 2543 2544 2545 2546 $F = \frac{100}{1 + \left(\frac{J}{100 - J}\right) \left(\frac{\gamma_{moist}}{\gamma_w (G_s)_{moist}}\right)}$ 2547 2548 2549 2550 2551

COMMENTARY

C9.1.2.1.5 — Correction of γ_h for coarse-grained soil. The formula for γ_h is predicated on all of the soils being finer than the No. 200 sieve. Many expansive soils have substantial portions that are larger than this and the chart value of γ_h must be corrected for the percent of the soil that is larger than the No. 200 sieve. The correction must be done on a volumetric rather than weight basis. The correction method recommended herein is adapted from the method that was developed by the U.S. Department of Agriculture Natural Resources Conservation Service (NRCS).¹¹

This volumetric correction will reduce the γ_h value for all soil particles larger than the No. 10 sieve (2.0 mm [0.08 in.]). The NRCS11 found that no reduction in the γ_h value is warranted for soils with particles smaller than the No. 10 sieve.

2553 where F is percent by volume of the fraction of the soil smaller than the No. 10 sieve (2.0 mm [0.08 in.]) 2554 2555 as a percentage of the total soil volume; γ_{moist} is the total unit weight of the soil at the soil wet limit around 2556 a *pF* of 2.5 for clay; $\gamma_{in-situ}$ is the dry unit weight of 2557 the soil at its natural water content (around standard 2558 proctor optimum water content or shrinkage limit); 2559 J is the percent of the soil by weight that is larger 2560 than the No. 10 sieve (2.0 mm [0.08 in.]); $(G_s)_{coarse}$ is 2561 the specific gravity of the soil particles larger than 2562~ 2.0 mm (0.08 in.); and γ_w is the unit weight of water.

2552

The values of γ_{moist} and $\gamma_{in-situ}$ should be for the soil in its natural state and may be estimated for the purpose of this correction.

In lieu of specific laboratory testing, $(G_s)_{coarse}$ may be assumed to be 2.65.

2606 Fig. 9.8—Void ratio versus overburden pressure.

 $\alpha'_{swell} = (0.0029 - 0.000162S_s - 0.0122\gamma_{h \ swell})F_f$

COMMENTARY

C9.1.2.4 — Method four: overburden pressure swell test procedures

To a lesser extent, the overburden swell pressure test also requires undisturbed samples and an effort approximately equivalent to the hydrometer and Atterberg limits procedures.

C9.1.3 — Modified unsaturated diffusion coefficient α'

One modified unsaturated diffusion coefficient α' is calculated for $\gamma_{h \, swell}$ and another coefficient α' is calculated for $\gamma_{h \, shrink}$. The unsaturated diffusion coefficient is also modified by the soil fabric factor, ranging from 1.0 to 1.2, which takes into account the presence of horizontal and vertical moisture flow paths, including roots, desiccation cracks, layers, fractures, and joints.

2654

For shrinkage (edge drop)

2655 2656

2657 $\alpha'_{shrink} = (0.0029 - 0.000162S_s - 0.0122\gamma_{h shrink})F_f$

RECOMMENDATIONS

2658 2659

where F_{f} is determined from Table 9.1 and 2661

2662 Table 9.1—Soil fabric factor F_{f}

$\gamma < < \gamma$			
2663	Condition		
2664		Non-CH soils	1.0
2666		Profile with one root, crack, sand/silt seam all \leq 1/8 in. width/dimension in any combination	1.0
2667 2668 2669	CH soils	Profile with two to four roots, cracks, sand/silt seams all larger than 1/8 in. width/dimension in any combination	1.1
2670 2671		Profile with more than four roots, cracks, sand/silt seams all larger than 1/8 in. width/dimension in any combination	1.2
2672 2673 2674 2675		$S_s = -20.29 + 0.1555(LL) - 0.117(Pl) + 0.0684(\%_{_{=\#200}})$	
2676 2677 2678	9.1.4	– Weighted average of α'	
2679	For la	ayered soils, calculate α' for swelling and sh	rink-

2680 age for each layer down to 9 ft (2.7 m) (or more, if 2681 justified by geotechnical analysis). Divide the total soil 2682 profile into three sections: the top third, the middle 2683 third, and the bottom third. Soil layers (or parts of 2684 layers) within the top, middle, and bottom thirds of 2685 the soil profile shall be assigned a weighting factor 2686 of 3, 2, and 1, respectively. The weighted average of 2687 α' shall be determined for each swell mode as the 2688 sum of the products of the weighting factor, times 2689 the thickness of the layer (or part of layer), times the 2690 value of α' for that layer, divided by the sum of the 2691 products of the weighting factor, times the thickness 2692 of the layer (or part of layer).

- 2693 2694
- 2695 2696
- 2697

2698 9.1.5 — Determination of e_m

2699 Determine e_m for edge drop and edge lift swell modes 2700 from Fig. 9.10, using a larger value from I_m or α' charts 2701 (using weighted α' as described in Section 9.1.4). The 2702 procedure limits e_m to a maximum of 9 ft (2.7 m) for 2703 any case of edge drop or edge lift.

 $(\alpha)_{\text{weighted}} = \left(\sum F_i \times D_i \times \alpha_i\right) / \left(\sum F_i \times D_i\right)$

C9.1.4 — Weighted average of α'

The weighting protocol is described in Section 3.2.9 of PTI DC10.1-08.² A specific example, with calculations, is presented in Section 3.6.3 of the same document.

For layered soils, weighted averages of several soil properties must be calculated. This document requires weighted averages for the PI, the suction compression index γ_h for both swelling and shrinking conditions (that is, $\gamma_{h \, swell}$ and $\gamma_{h \, shrink}$), and the modified unsaturated diffusion coefficient α' . The procedure for calculating the weighted average of all the soil properties is the same.

COMMENTARY

2722 9.2 – Differential soil movement y_m

2724 2725 9.2.1 — Determination of y_m by computer methods 2726 Differential soil movement y_m may be determined 2727 by computer methods, or for those cases where 2728 the soil suction changes are controlled by normal 2729 environmental influences (including proper irrigation practices); y_m shall be determined using the stress 2730 change factors (SCFs) in Table 9.2(a) post-equilibrium 2731 suction envelope) or Table 9.2(b) (post-construc-2732 tion suction envelope). Tables 9.3(a), (b), (c), and (d) 2733 provide SCFs for selected nonenvironmental influ-2734 ences. Other nonenvironmental influences, such 2735 as tree removal, poor drainage, high water tables, 2736 shallow rock, soil conditioning, and so on, require 2737 modeling by computer methods.

2738

2723

2739 These SCF tables assume the depth to constant 2740 suction is 9 ft (2.7 m) and γ_h of the soil layers does not 2741 vary by more than 10%. If these assumptions are not appropriate, computer methods shall be used.

- 2743
- 2744
- 2745
- 2746
- 2747
- 2748
- 2749

2750

C9.2.1 — Determination of y_{m} by computer methods

The SCF method should only be used if a typical trumpetshaped final suction profile as shown in Fig. C9.1 can be assumed, the depth to constant suction can be assumed to be 9 ft (2.7 m), and γ_h does not vary by more than 10% between layers in the soil profile. Otherwise, this method may not be accurate.

For nonstandard design conditions where these assumptions are not appropriate, (VOLFLO),¹² a commercially available computer program, may be used to determine y_m in accordance with Section 9.2.1.

COMMENTARY

Table 9.2(a)—Stress change factor (SCF) for use in determining y_m : post-equilibrium case

2754		Final controlling suction at surface, <i>pF</i>						
2755	Equlibrium suction	2.5	2.7	3.0	3.5	-4.0	-4.2	4.5
2756	2.7	+3.2	0	-4.1	-13.6	-25.7	-31.3	-40.0
757	-3.0	+9.6	+5.1	0	-7.5	-18.2	-23.1	-31.3
0758	-3.3	+17.7	+12.1	+5.1	-2.6	-11.5	-15.8	-23.1
2750	-3.6	+27.1	+20.7	+12.1	+1.6	-5.7	-9.4	-15.8
2139	-3.9	+38.1	+30.8	+20.7	+7.3	-1.3	-4.1	-9.4
2/60	-4.2	+50.4	+42.1	+30.8	+14.8	+3.2	0	-4.1
2761	-4.5	+63.6	+54.7	+42.1	+23.9	+9.6	+5.1	0

Notes: $z_m = 9$ ft (2.7 m); post-equilbrium case, which is recommended for use for areas of Thornthwaite indexes that are more negative than -15 and more positive than +15; shaded boxes represent extreme cases; atypical trumpet-shaped suction envelopes or depths to equilibrium suction, which may vary from 9 ft (2.7 m), require use of computer analysis.

2764

2752

²⁷⁶⁵ Table 9.2(b)—Stress change factor (SCF) for use in determining y_m : post-construction case

2766			-						
2700	Suction change <i>pF</i>	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
2767	Wetting (swelling)	33.2	36.7	40.2	43.9	47.6	51.4	55.3	59.2
2768	Drying (shrinking)	-24.3	-26.7	-29.2	-31.7	-34.2	-36.7	-39.3	-41.9

2769Notes: Suction change of 1.5pF is recommended. This value has been found to produce designs that are typical and perform well in slab-on-ground design2770practice. Other values of suction change are listed, which LDPs may use for special cases or different local practices; $z_m = 9$ ft (2.7 m); Table 9.2(b) is based2771on post-construction case, which is recommended for areas of Thornthwaite indexes, including and between -15 and +15; atypical trumpet-shaped suction2771envelopes or depths to equilibrium section, which may vary from 9 ft (2.7 m), require use of computer analysis.

Table 9.3(a)—Stress change factor (SCF) for use in determining y_m : lawn irrigation

2774	Equilibrium				Stress cha	ange factor			
775	suction (<i>pF</i>)			Controllin	ng surface suct	tion due to law	n watering		
	at depth z_m		<i>рF</i> , 1	units		With 4 ft	(1.2 m) deep m	oisture barrie	r <i>pF</i> , units
2770	рF	2.5	2.7	3.0	3.5	2.5	2.7	3.0	3.5
2///	2.7	3.2	0	0	0	0.1	0	0	0
2778	3.0	9.6	5.1	0	0	0.1	0.1	0	0
2779	3.3	17.7	12.1	5.1	0	0.1	0.1	0.1	0
2780	3.6	27.1	20.7	12.1	1.6	1.3	0.5	0.1	0.1
781	3.9	38.1	30.8	20.7	7.3	3.8	1.9	0.5	0.1
2701	4.2	50.4	42.1	30.8	14.8	7.7	4.9	1.9	0.1
2702	4.5	63.6	54.7	42.1	23.9	12.4	9.1	4.9	0.8
1701						1			

2782

2783

2784

Table 9.3(b)—Stress change factor (SCF) for use in determining y_m : flower bed case (4 ft [1.2 m] deep flower bed moisture)

2705	Equilibrium			St	ress change fac	tor						
2780	suction (pF)		Controlling surface suction due to flower bed									
2787	at depth zm		<i>рF</i> , ц	units		With 4 ft (1.2 m) deep moisture barrier pF, units						
2788	рF	2.5	3.0	3.5	2.5	2.7	3.0	3.5				
2789	2.7	3.2	0	0	0	0	0	0				
2790	3.0	13.1	7.0	0	0	0	0	0				
2791	3.3	27.3	14.2	0	3.7	1.0	0	0				
2701	3.6	48.7	35.1	1.6	11.6	6.2	1.1	0				
2192	3.9	69.5	35.1	10.2	22.5	15.2	6.4	0				
2793	4.2	90.3	56.0	21.5	35.1	26.6	15.3	2.4				
2794	4.5	110.0	76.7	42.3	49.0	39.7	26.6	9.1				

COMMENTARY

2796 Table 9.3(c)—Stress change factor (SCF) for use in determining y_m: tree drying case (without 2797 moisture barrier) 2700

700				St	ress change fac	tor						
/99	Depth of tree		Measured equilibrium suction at depth, z_m , pF units									
300	root zone, ft	2.7	3.0	3.3	3.6	3.9	4.2	4.5				
301	4	-79.1	-60.1	-43.2	-28.4	-15.6	-0.1	0.0				
302	10	-169.6	-146.3	-124.9	-82.8	-42.6+	-9.7≠	0.0				
303	15	-244.7	-213.6	-182.5	-108.1 [*]	-42.6+	–9.7≠	0.0				
204	20	-333.4	-292.9	-252.5	-108.1 [*]	-42.6+	-9.7≠	0.0				

*Movement active zone, $z_A = 11.5$ ft

2805 +Movement active zone, $Z_A = 7.5$ ft #Movement active zone, $Z_A = 3.5$ ft

2806

2807

2795

Table 9.3(d)—Stress change factor (SCF) for use in determining y_m : tree drying case with 4 ft 2808 deep moisture barrier 2809

2810		Stress change factor										
2010	Depth of tree	Measured equilibrium suction at depth, <i>z_m</i> , <i>pF</i> units										
2011	root zone, ft	2.7	3.0	3.3	3.6	3.9	4.2	4.5				
2812	4	-36.5	-25.2	-15.8	-8.1	-2.6	0.0	0.0				
2813	10	-116.3	-102.4	-88.4	-53.1	- 21.5⁺	0.0	0.0				
2814	15	-193.5	-170.5	-147.5	-78.5 [*]	-21.5+	0.0	0.0				
2815	20	-278.2	-246.1	-214.2	-78.5*	− 21.5⁺	0.0	0.0				

'Movement active zone, $Z_A = 11.5$ ft 2816

⁺Movement active zone, $Z_A = 7.5$ ft Movement active zone, Z_A = 3.5 ft

2817

2818 **9.2.1.1** — Geographical areas with $I_m < -15$ or $I_m >$ 2819 + 15 shall use the post-equilibrium suction envelope. 2820 ym shrink is calculated using a suction change envelope 2821 starting from the equilibrium suction profile to a 2822 dry suction profile. $y_{m \, swell}$ is calculated for a suction 2823 change envelope starting from the equilibrium suction 2824 profile to a wet suction profile.

2825 Unless determined from suction testing or experi-2826 ence, the following surface suction values shall be used: 2827 (a) Equilibrium suction shall be determined from 2828 Fig. 9.11.

- 2829 (b) The surface suction value for the dry suction 2830 profile shall be 4.5pF. 2831
- 2832 (c) The surface suction value for the wet suction 2833 profile shall be 3.0pF. 2834

2835 **9.2.1.2** — Geographical areas with $-15 \le I_m \ge +15$ 2836 shall use the post-construction suction envelope with 2837 a total suction change at the surface of 1.5pF. $y_{m shrink}$ is 2838 calculated using a suction change envelope starting from a wet suction profile to a dry suction profile. 2839 $y_{m \text{ swell}}$ is calculated for a suction change envelope start-2840 ing from the dry suction profile to a wet suction profile. 2841

9.2.1.1 — The surface soil suction values presented should be used for design unless laboratory testing or experience indicates that other values should be used.

- (a) 4.5pF is the dry suction value representative of the wilting point of vegetation and should be used for normal design conditions. A value of 6.0pF is an extreme upper bound representing long-term sunbaked bare ground and should not be used for typical design conditions.
- (b) 3.0pF is the wet suction value representative of a well-drained site and should be used for normal design conditions. A 2.5pF is an extreme suction value that may be used to model long-term saturation conditions and should not be used for typical design conditions.

2877 **9.2.2.1** — For layered soils, calculate a weighted 2878 $_{2879}$ γ_h value $\gamma_{h \, mod}$ for swelling and shrinkage for each layer down to 9 ft (2.7 m) (or more, if justified by geotechnical 2880 analysis). Divide the total soil profile into three sections: 2881 the top third, the middle third, and the bottom third. 2882 Soil layers (or parts of layers) within the top, middle, 2883 and bottom thirds of the soil profile shall be assigned 2884 a weighting factor of 3, 2, and 1, respectively. $\gamma_{h mod swell}$ 2885 and $\gamma_{h mod shrink}$ shall be determined as the sum of the products of the weighting factor times the thickness 2886 2887 of the layer (or part of the layer), times the value of gh for that layer, divided by the sum of the products of 2888 the weighting factor, times the thickness of the layer 2889 (or part of layer). y_m for each soil-structure distortion 2890 mode shall be taken as 2891

- 2892
- $y_{m \, swell} = \gamma_{h \, mod \, swell} (SCF)$ 2893
- 2894
- $y_{m \, shrink} = \gamma_{h \, mod \, shrink}$ (SCF) 2895

2896 **9.2.2.2** – If γ_h varies by more than 10%, a 2897 computer modeling program is required to accurately 2898 calculate y_m. Nonexpansive layers shall be modeled 2899 using γ_h equal to 0.01.

2900

9.3 — Moisture barriers 2901

It shall be permitted to use vertical and horizontal 2902 moisture barriers to reduce the soil parameters e, and 2903 y_m if the barriers are designed and installed to mitigate 2904 moisture migration to or from the entire perimeter of 2905 the foundation area on a permanent basis. 2906

2910 2911

2907 Both vertical and horizontal barriers shall be protected 2908 to minimize damage and maintain the integrity of the 2909 barrier.

C9.3 — Moisture barriers

The effect of a barrier on e_{m} and y_{m} may be estimated by the principles of unsaturated soil mechanics.

Conditions can exist, such as desiccated clays; large vertical cracks; nonhomogeneous subsurface conditions (sand layers and so on); site slope; or vertical moisture movements, which may minimize or eliminate the effect of a vertical and/or horizontal barrier. The effect of all barriers should be evaluated by an LDP.

2912	Table 9.4(a)–Value o	f reduced e	e_m for vario	ous perime	ter vertical	moisture	barriers fo	r CH soils
2913					D	epth of barrier,	ft		
2914			2.0	2.5	3.0	3.5	4.0	4.5	5.0
2915		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
2916		3.0	2.2	2.0	2.0	2.0	2.0	2.0	2.0
2917		4.0	3.5	3.1	2.0	2.0	2.0	2.0	2.0
2918	e,, ft (center	5.0	4.6	4.3	4.0	2.8	2.5	2.5	2.5
2919	"or edge)	6.0	5.7	5.5	5.2	4.2	3.0	3.0	3.0
2920		7.0	6.7	6.5	6.3	5.5	4.5	3.5	3.5
2921		8.0	7.7	7.6	7.4	6.6	5.7	4.7	4.0
2022		9.0	8.8	8.6	8.5	7.7	6.9	6.0	4.9

COMMENTARY

COMMENTARY

				D	epth of barrier	pth of barrier, ft			
		2.0	2.5	3.0	3.5	4.0	4.5	5.0	
	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	
	3.0	2.2	2.0	2.0	2.0	2.0	2.0	2.	
	4.0	3.5	3.1	2.6	2.0	2.0	2.0	2.0	
e,, ft (center	5.0	4.6	4.3	4.0	2.8	2.0	2.0	2.	
"or edge)	6.0	5.7	5.5	5.2	4.2	3.0	2.0	2.	
	7.0	6.7	6.5	6.3	5.5	4.5	3.2	2.	
_	8.0	7.7	7.6	7.4	6.6	5.7	4.7	3.	
	9.0	8.8	8.6	8.5	7.7	6.9	6.0	4.9	

2925 Table 9.4(b)—Value of reduced e_m for various perimeter vertical moisture barriers for non-CH soils

²⁹³⁷ ₂₉₃₈ Table 9.4(c)—Value of reduced e_m for various perimeter horizontal moisture barriers for CH soils

2939				Width of barrier, ft											
2940			2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5				
2941		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0				
2942		3.0	2.5	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0				
2943		4.0	3.5	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0				
2944	e _m , ft	5.0	4.5	4.0	3.5	3.0	2.5	2.5	2.5	2.5	2.5				
2945	edge)	6.0	5.5	5.0	4.5	4.0	3.5	3.0	3.0	3.0	3.0				
2946		7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.5	3.5				
2947		8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	4.0				
2948		9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5				

Table 9.4(d)—Value of reduced e_m for various perimeter horizontal moisture barriers for non-CH soils

2952								Widt	h of barr	ier, ft					
2953			2.5	3.0	3.5	4.0	4.5	5.0	5.5	6.0	6.5	7.0	7.5	8.0	8.5
2954		2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
2955	-	3.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
2956		4.0	3.1	2.6	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
2957	e _m , ft	5.0	4.3	4.0	2.8	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
2958	(center or edge)	6.0	5.5	5.2	4.2	3.0	2.0	2.0	2.5	2.0	2.0	2.0	2.0	2.0	2.0
2959		7.0	6.5	6.3	5.5	4.5	3.2	4.0	3.5	3.0	2.5	2.0	2.0	2.0	2.0
2960		8.0	7.6	7.4	6.6	5.7	4.7	3.3	4.5	4.0	3.5	3.0	2.5	2.0	2.0
2961	-	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.0	3.0	2.5

2962 Note: 1 ft = 0.30 m.

2963	RECOMMENDATIONS	COM
2964 2965 2966 2967	For CH soil, e_m or y_m with barriers shall not be less than 50% of the e_m or y_m , respectively, without barri- ers. e_m with barriers shall not be less than 2 ft (0.6 m).	
2968 2969 2970 2971 2972	For non-CH soil, e_m or y_m with barriers shall not be less than 25% of the e_m or y_m , respectively, without barriers. e_m with barriers shall not be less than 2 ft (0.6 m).	
2973 2974 2975 2976 2977	9.3.1 — Vertical barriers In lieu of computer methods, the effect of a vertical barrier on e_m shall be obtained by using either Table 9.4(a) or 9.4(b).	
2977 2978 2979 2980 2981 2982	A vertical barrier shall extend a minimum of 2 ft (0.6 m) below the adjacent ground surface to be considered to have an effect on e_m and y_m . y_m shall not be less than 80% of the y_m without barriers for a vertical barrier less than 3 ft (0.9 m).	
2983 2984 2985 2986 2987	9.3.2 — Horizontal barriers In lieu of computer methods, the effect of a horizontal barrier on em shall be obtained by using Table 9.4(c) or 9.4(d).	C9.3.2 — Horizontal b . The effect of the barrier dimensional (2-D) m program, such as VOLF
2987 2988 2989 2990 2991 2992	A horizontal barrier shall extend a minimum of 2.5 ft (0.76 m) away from the foundation system to be considered to have an effect on e_m and y_m . e_m (with barrier) = e_m (without barrier) –	Local conditions may dicta the LDP should account for Horizontal barriers may or below-ground protect or pavers.
2993 2994 2995 2996 2997 2008	(width of barrier – 2 ft [0.6 m]) Horizontal barriers shall be protected against damage that would reduce the effectiveness of the barrier.	
2998 2999 3000 3001	10.0 - MATERIALS	C10.0 –
3002 3003	10.1 – Concrete	
3004 3005 3006	10.1.1 — Concrete shall have a minimum specified compressive strength of 2500 psi (17 MPa) at 28 days.	
3007 3008	10.1.2 — Admixtures containing calcium chloride shall not be used.	

MMENTARY

oarriers

er on y_m requires the use of a two-noisture-flow analysis computer FLO.¹²

tate a wider and deeper minimum, and for factors discussed in Section C9.3.

y be protected by an above-ground tion layer, such as concrete, asphalt,

– MATERIALS

3009	RECOMMENDATIONS	COMMENTARY
3010	10.2 – Reinforcement	
3012 3013	10.2.1 — Prestressed reinforcement	
3014 3015	10.2.1.1 —Tendons shall conform to PTI M10.6-15. ¹³	
3016 3017 3018 3019	10.2.1.2 — Allowable stresses (a) At jacking force, tensile stress shall not exceed $0.94f_{py}$ or $0.80f_{pu}$.	
3020 3021 3022 3023	(b) Immediately after prestress transfer, tensile stress at anchorage devices shall not exceed $0.70f_{pu}$.	
3023 3024	10.2.2 — Non-prestressed reinforcement	
3025 3026 3027 3028	10.2.2.1 — Deformed reinforcement shall conform to ASTM A615/A615M, Grade 40 or 60, or ASTM A706/A706M.	
3029 3030 3031	10.2.2.2 — Welded-wire reinforcement shall conform to ASTM A185/A185M.	
3032 3033 3034 3035	10.2.3 – Cover to reinforcement Minimum concrete cover to tendons (excluding anchors and strand tails) and non-prestressed reinforcement shall be as follows:	
3036 3037 3038	10.2.3.1 — Ribs Top: 1 in. (25 mm)	
3039 3040	Bottom: 3 in. (76 mm)	
3041 3042	Sides: 2.5 in. (64 mm)	
3043 3044 3045 3046	10.2.3.2 — Slabs (including uniform thickness foundation [UTF]) Top: 1 in. (25 mm)	
3047 3048 3049	Bottom: 1.5 in. (38 mm)	
3050 3051 3052 3053 3054 3055	10.3 – Anchors Bearing stresses on concrete created by anchors shall not exceed:	C10.3 — Anchors The constant has been increased for slab-on-ground construction from 1.25 to 1.40 at transfer to allow for stressing of the tendons at a minimum concrete compres- sive strength of 2000 psi (14 MPa). Experience has shown that this is an acceptable practice, provided that the anchors

3101 cement.

COMMENTARY

are cast into a perimeter rib or thickened section that is at least 11.5 in. (290 mm) deep, that the anchor is located and oriented such that the square root of A_b'/A_b is greater than 3.2, and that the nominal slab tendon spacing is greater than 24 in. (0.6 m).

Refer to Chacos¹⁴ for further information.

C10.4 — Durability

C10.4.2 — When a moisture control barrier such as a polyethylene vapor retarder is placed between the concrete (including the sides and bottom of the ribs) and the soil, the concrete is not considered to be in direct contact with soil within the context of Section 10.4.

2 RECON	IMENDATIONS	COMN	IENTARY		
10.4.2.1.2 — For s to or greater than 0.2 made with Type V cem shall have a minimum c (21 MPa) at 28 days.	oil sulfate concentrations equal % by weight, concrete shall be ent (or approved equivalent) and compressive strength of 3000 psi				
 10.4.2.1.3 — Cond sulfates shall be deterned of Transportation Test method recognized in commonly used in the 	centrations of water-soluble soil mined by California Department t 417,15 or another current test the governing building code or geographic area of the project.				
10.4.2.2 – Soil cl When concrete i containing a level of ch caused tendon failure area as determined by tendons and reinforcir corrosion according to or 10.4.2.2.3.	hlorides s in direct contact with soil loride ions that is known to have e due to corrosion in the local v local experience and practice, ng steel shall be protected from o Sections 10.4.2.2.1, 10.4.2.2.2,	C10.4.2.2 — Soil chlorides Concentrations of soil chloride ions can be determined by California Department of Transportation Test 422, ¹⁶ or another current test method recognized in the governing building code or commonly used in the geographic area of the project.			
10.4.2.2.1 — Use accordance with Table	e minimum concrete cover in e 10.1.	C10.4.2.2.1 — Table 4.1 is derived from Table 8.22 of the California Department of Transportation's "Bridg Design Specifications." ¹⁷			
5 10.4.2.2.2 – Use	encapsulated tendons.				
10.4.2.2.3 — Us corrosion as approved	e other means of mitigating d by the LDP.	C10.4.2.2.3 — ACI 222.3R-03 ¹⁶ describes a variety of techniques that may be used to protect steel embedded is concrete against corrosion.			
2 Table 10.1—Recom 3 corrosive soil	mended minimum concrete	e cover (excluding ancho	rs and strand tails) for		
		Chloride concentration, ppm			
	500 to 5000	5001 to 10 000	>10.000		
<u> </u>	300 to 3000	5001 10 10,000	> 10,000		

3048 unless otherwise specified.

3049		11.0- REFERENCES	
3050 3051 3052 3053 3054 3055	11.1 — Referenced standards and reports The standards and reports listed as follows were the latest editions at the time this document was prepared. Because these documents are revised frequently, the reader is advised to contact the proper sponsoring group if it is desired to refer to the latest version.		
 3056 3057 3058 3059 3060 3061 3062 3063 	ASTM Intern A185/A185M A615/A615M A706/A706M D422 D4318 D4546 D4829	Ational Standard Specification for Steel Welded Wire Reinforcement, Plain, for Concrete Standard Specification for Deformed and Plain Carbon-Steel Bars for Concrete Reinforcement Standard Specification for Deformed and Plain Low-Alloy Steel Bars for Concrete Reinforcement Standard Test Method for Particle-Size Analysis of Soils Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils Standard Test Methods for One-Dimensional Swell or Collapse of Soils Standard Test Method for Expansion Index of Soils	
3064 3065 3066 3067 3068 3069 3070 3071	International Code Council International Building Code These publications may be obtained from the following organizations: ASTM International		
3071 3072 3073 3074 3075 3076 3077 3078	Internation 500 New J Washingto www.iccsa	West Conshohocken, PA 19428 www.astm.org International Code Council 500 New Jersey Avenue, NW, 6th Floor Washington, DC 20001 www.iccsafe.org	
3077 3078	Washingto www.iccsa	n, DC 20001 ife.org	

3079 11.2 — Cited references

3080 1. ACI Committee 318, "Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary (ACI 318R-14)," American Concrete Institute, Farmington Hills, MI, 2014, 519 pp. 3081 2. PTI Committee DC-10, "Design of Post-Tensioned Slabs-on-Ground (PTI DC10.1-08)," third edition with 2008 3082 supplement, Post-Tensioning Institute, Farmington Hills, MI, 2008, 106 pp. 3083 3. Thornthwaite, C. W., "An Approach Toward a Rational Classification of Climate," Geographical Review, V. 38, 3084 No. 1, 1948, pp. 55-94. 3085 4. Wray, W. K, "Development of a Design Procedure for Residential and Light Commercial Slabs-on-Ground Constructed 3086 Over Expansive Soils," PhD thesis, Texas A&M University, College Station, TX, 1978. 3087 5. Zia, P. H.; Peterson, K.; Scott, N. L.; and Workman, E. B., "Estimating Prestress Losses," Concrete International, V. 1, 3088 No. 6, June 1979, pp. 32-36. 3089 6. Joint ACI-ASCE Committee 423, "Guide to Estimating Prestress Loss (ACI 423.10R-16)," American Concrete Institute, 3090 Farmington Hills, MI, 2016, 68 pp. 3091 7. Bondy, K. B., "Cracking in Post-Tensioned Ground-Supported Slabs on Expansive Soils," Technical Note #6, Post-3092 Tensioning Institute, Farmington Hills, MI, Aug. 1995. 8. PTI Committee DC-10, "Design of Post-Tensioned Slabs-on-Ground (PTI DC10.1-08)," second edition, Post-3093 Tensioning Institute, Farmington Hills, MI, 1996, 155 pp. 3094 9. Bondy, K. B., "Performance Evaluation of Residential Concrete Foundations," Technical Note #9, Post-Tensioning 3095 Institute, Farmington Hills, MI, July 2000. 3096 10. Covar, A. P., and Lytton, R. L., "Estimating Soil Swelling Behavior Using Soil Classification Properties," Geotech-3097 nical Publication, No. 115, 2001, pp. 44-63. 3098 11. Lytton, R. L., "Prediction of Movement of Expansive Clays," Geotechnical Special Publication, No. 40, V. 2, 1994, 3099 pp. 1827-1845. 3100 12. VOLFLO 1.5, A Computer Program Available through Geostructural Tool Kit, Inc., Austin, TX, 2005, http://www. 3101 gtksoft.com/volflo.htm. 3102 13. PTI Committee M-10, "Specification for Unbonded Tendons for Slab-on-Ground Construction (PTI M10.6-15)," Post-Tensioning Institute, Farmington Hills, MI, 2015, 35 pp. 3103 14. Chacos, G. P., "Back-Up Bars for Residential Slab-on-Ground Foundations," PTI JOURNAL, V. 5, No. 1, July 2007, 3104 pp. 17-22. 3105 15. "Method of Testing Soils and Waters for Sulfate Content, California Test 417," State of California, Department of 3106 Transportation, Engineering Service Center, Sacramento, CA, Mar. 1999. 3107 16. "Method for Testing Soils and Waters for Chloride Content, California Test 422." State of California, Department of 3108 Transportation, Engineering Service Center, Sacramento, CA, Apr. 2000. 3109 17. "Bridge Design Specifications," State of California, Department of Transportation, Sacramento, CA, Sept. 2003. 3110 18. ACI Committee 222, "Design and Construction Practices to Mitigate Corrosion of Reinforcement in Concrete Struc-3111 tures (ACI 222.3R-03)," American Concrete Institute, Farmington Hills, MI, 2003, 29 pp.

PTI Committee DC-10

3157 1955 to 1974).

Fig. A3—Thornthwaite moisture index distribution in California.

3158	The Post-Tensioning Institute provides the following activities
3159	in support of its members and the industry.
3160	
3161	
3162	• recipical and certification committees that provide consensus
3163	guides, reports, manuals, specifications, standards, and
3164	certification manuals
3165	• Spring DTL Convention and Fall DTL Committee Days to
3166	• Spring Fit Convention and Fait Fit Committee Days to
3167	facilitate the work of its committees
3168	• Technical sessions at the Spring PTI Convention to provide
3169	a forum for technical information exchange
3170	a for an for teenmear mitormation exchange
3171	• Educational seminars and webinars to disseminate
3172	information on post-tensioned concrete
3173	
3174	 Programs for certification of personnel working with
3175	post-tensioned concrete, for certification of plants producing
3176	unbonded single-strand tendons, and for certification of
3177	multistrand and bar post-tensioning systems
3179	
3180	• Research projects and student scholarships
3181	• Coordination and cooncration with other related societies
3182	• Coordination and cooperation with other related societies
3183	• The PTI JOURNAL

The Post-Tensioning Institute

stablished in 1976, the Post-Tensioning Institute is recognized as the worldwide authority on post-tensioning. PTI is dedicated to expanding post-tensioning applications through marketing, education, research, teamwork, and code development while advancing the quality, safety, efficiency, profitability, and use of post-tensioning systems.

O ne of PTI's principal functions is to provide technical guidance on the design, construction, maintenance, and repair & rehabilitation of post-tensioned structures. PTI has published many informative manuals and technical guides covering most aspects of post-tensioning. In addition, PTI publishes the PTI *JOURNAL*, Newsletters, Technical Notes, Frequently Asked Questions, and Technical Updates that give in-depth discussion and/or analysis of issues pertinent to designers in the post-tensioning field. Members are also kept up-to-date on industry-related events and information on the PTI website at www.post-tensioning.org.

P TI technical committees, as well as PTI as a whole, operate under a consensus process that ensures that all participants have their views considered. Members of the Institute include major post-tensioning materials fabricators; manufacturers of prestressing materials; companies supplying materials, services, and equipment used in post-tensioned construction; and professional engineers, architects, and contractors. Individuals interested in the activities of PTI are encouraged to become a member.

POST-TENSIONING INSTITUTE Strength in Concrete